scholarly journals Physical origin of the one-quarter exact exchange in density functional theory

2020 ◽  
Vol 32 (38) ◽  
pp. 385501
Author(s):  
Marco Bernardi
Author(s):  
Vladimir Tsirelson ◽  
Adam Stash

This work extends the orbital-free density functional theory to the field of quantum crystallography. The total electronic energy is decomposed into electrostatic, exchange, Weizsacker and Pauli components on the basis of physically grounded arguments. Then, the one-electron Euler equation is re-written through corresponding potentials, which have clear physical and chemical meaning. Partial electron densities related with these potentials by the Poisson equation are also defined. All these functions were analyzed from viewpoint of their physical content and limits of applicability. Then, they were expressed in terms of experimental electron density and its derivatives using the orbital-free density functional theory approximations, and applied to the study of chemical bonding in a heteromolecular crystal of ammonium hydrooxalate oxalic acid dihydrate. It is demonstrated that this approach allows the electron density to be decomposed into physically meaningful components associated with electrostatics, exchange, and spin-independent wave properties of electrons or with their combinations in a crystal. Therefore, the bonding information about a crystal that was previously unavailable for X-ray diffraction analysis can be now obtained.


2003 ◽  
Vol 119 (21) ◽  
pp. 11001-11004 ◽  
Author(s):  
Paula Mori-Sánchez ◽  
Qin Wu ◽  
Weitao Yang

2020 ◽  
Vol 22 (28) ◽  
pp. 15805-15830 ◽  
Author(s):  
Dale R. Lonsdale ◽  
Lars Goerigk

The one-electron self-interaction error (SIE) is analysed for 74 Density Functional Theory (DFT) approximations in a series of novel one-electron model systems revealing new aspects of the SIE that should be considered in future DFT developments.


Sign in / Sign up

Export Citation Format

Share Document