exchange potential
Recently Published Documents


TOTAL DOCUMENTS

413
(FIVE YEARS 49)

H-INDEX

47
(FIVE YEARS 3)

2022 ◽  
Vol 258 ◽  
pp. 04007
Author(s):  
Meng-Lin Du

A coupled-channel approach including the ΛcD¯(*) and ηcp channels in addition to the Σc(*)D¯(*) and J/ψp channels, as required by unitarity and heavy quark spin symmetry (HQSS), is applied to the hidden-charm pentaquark Pc states, i.e., Pc(4312), Pc(4440) and Pc(4457), discovered by LHCb Collaboration. It is demonstrated that to obtain cutoff independent results, the one-pion exchange potential in the multichannel systems is to be supplemented with next-leading order counter terms responsible for the S-wave-to-D-wave transitions. We show that the experimental data for the J/ψp mass distributions are fully in line with the ΣcD¯ and ΣcD¯* hadronic molecular interpretation of the Pc(4312) and Pc(4440)/Pc(4457), respectively. A narrow Σc*D¯ molecule around 4.38 GeV is required by the HQSS with the evidence for its existence seen in the J/ψp spectrum. Moreover, we predict the line shapes for the elastic and inelastic channels.


Author(s):  
B. Rezini ◽  
T. Seddik ◽  
R. Mouacher ◽  
Tuan Vu ◽  
Mohammed Batouche ◽  
...  

Owing to the fascinating optoelectronic and photovoltaic properties, perovskite halide materials have attracted much attention for solar cells applications. Using the first-principles approaches, we present here results of calculations of the strain effects on electronic and optical properties as well as carriers mobility of CsSnI double perovskite. The calculated band gap energy of unstrained CsSnI is about 1.257 eV when using Tran-Blaha modified Becke Johnson (mBJ) exchange potential that is in fair agreement with experimental measurements. Under the applied strains, this band gap value increases up to 1.316 eV for -4% compressive strain and decreases till 1.211 eV for 4% tensile strain. This effect is mainly due to the fact that the conduction band minimum shifts under compressive and tensile strains. From carrier mobility calculations, we notice that under tensile strain both hole and electron carrier mobilitiy diminishes, whereas the carrier mobility increases by 25.7 % for electron and by 15 % for holes under -4% compressive strain. Moreover, the optical analysis reveals that applied strain can affect the optical properties of CsSnI perovskite.


2021 ◽  
pp. 60-67
Author(s):  
E. Ternovsky ◽  
A. Mykhailov

It is presented  a new relativistic approach to computing the spectral parameters of multicharged ions in plasmas for different values of the plasmas screening (Debye) parameter (respectively, electron density, temperature). The approach used is based on the generalized relativistic energy approach combined with the optimized relativistic many-body perturbation theory (RMBPT) with the Dirac-Debye shielding model as zeroth approximation, adapted for application to study the spectral parameters of ions in plasmas. An electronic Hamiltonian for N-electron ion in plasmas is added by the Yukawa-type electron-electron and nuclear interaction potential. The special exchange potential as well as the electron density with dependence upon the temperature are used.


2021 ◽  
Vol 104 (15) ◽  
Author(s):  
C. M. Horowitz ◽  
C. R. Proetto ◽  
J. M. Pitarke

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
R. Hussien ◽  
Sh. M. Sewailem ◽  
L. I. Abou-Salem

The quark-quark (QQ) interaction as a perturbed term to the nucleon-nucleon interaction (NN) without any coupling between them is studied in a hybrid model. This model is used to calculate the ground-state energies of 2H1 and 4He2 nuclei. In a semirelativistic framework, this model is encouraged for light nuclei and the instanton-induced interaction by using the QQ potential and the NN interaction for a small scale around the hadron boundaries. This hybrid model depends on two theories, the one-boson exchange potential (OBEP) and the Cornell-dressed potential (CDP) for QQ. A small effect of quark-quark interaction is obtained on the values of the ground-state energies, around 6.7 and 1.2 percentage for 2H1 and 4He2, respectively nuclei.


Author(s):  
Abdelhamid Addala ◽  
Moussa Boudiaf ◽  
Maria Elektorowicz ◽  
Embarek Bentouhami ◽  
Yacine Bengeurba

Abstract Under varied conditions, the IRC 718 ion-exchange resin is used to extract chromium (VI) ions from aqueous solutions. On chromium (VI) removal effectiveness, the effects of adsorption dosage, contact time, beginning metal concentration, and pH were examined. The batch ion exchange process reached equilibrium after around 90 minutes of interaction. With an initial chromium (VI) concentration of 0.5 mg/dm3, the pH-dependent ion-exchange mechanism revealed maximal removal in the pH 2.0–10 range . The adsorption mechanism occurs between Cr(VI) determined as the electron acceptor, and IRC 718 determined as the electron donor. The equilibrium ion-exchange potential and ion transfer quantities for Amberlite IRC 718 were calculated using the Langmuir adsorption isotherm model. The overall ion exchange capacity of the resin was determined to be 187.72 mg of chromium (VI)/g of resin at an ideal pH of 6.0.


Author(s):  
Anggara Trisna Nugraha ◽  
Dadang Priyambodo

The maritime sector is one of the paths to Golden Indonesia 2045. This is because 70% of Indonesia's territory is a sea with an area of ​​3.25 million km2 and is supported by the large potential that can be utilized for the welfare of Indonesia, one of which is as a contributor to foreign exchange with foreign exchange potential from maritime sector amounting to US $28 million to US $56 million. The problem lingers on how to possible solve the problem regarding air pollution without shutting down industrial operations. Many multinational power plants have launched different campaigns in order to minimize the problem like planting trees and the like. But these small growing industries like grilling restaurants have given way to arising problem of air pollution issues On the other hand, the ocean is a contributor to half of the world's oxygen. But in a period of 50 years, areas with minimal oxygen levels in the oceans have increased. The main cause is global warming, one of which comes from increasing levels of carbon monoxide in the air. One of these gases comes from incomplete combustion in motorized vehicles. This is also exacerbated by the growth of motorized vehicles which has increased by 11.5% per year. If left like this, marine life will be destroyed and Indonesia will not reach its peak of glory in 2045. So to overcome this problem, a prototype design of Carbon Monoxide Box Separator was created. This prototype is a combination of detector sensors consisting of MQ7 to detect carbon monoxide, MQ135 to measure air quality, and DHT11 to measure humidity and air temperature, as well as a high voltage system on the L-Box (Lightning Box) which can produce O2 because of the copper plate. on the L-Box will bind the element carbon to carbon monoxide using a voltage of 400 kV. With this prototype design, it is hoped that Indonesia can achieve its glory and also as a form of QS practice. Ar-Rum verse 41 regarding Allah's command to preserve nature and the environment.


2021 ◽  
Vol 13 (01) ◽  
pp. 1-11
Author(s):  
A .K. Yassir ◽  
◽  
A. H. Hussain ◽  
F. A. Ali ◽  
◽  
...  

The Differential Cross Sections (DCS's), Total Cross Sections (TCS's) and Momentum Transfer Cross Sections (MTCS's) of electron and positron scattering by radium and radon atoms were calculated in the range of energy (5–500) eV using a total potential consisting of combining the static, exchange and polarization potentials at long distances. In addition, the correlation potential of Perdew–Zunger at short distances for electrons was used, as well as the correlation potential of Jain for positrons. The exchange potential for positrons was neglected. In this study, a good agreement with other experimental values and theoretical values of many investigators was found.


Author(s):  
Adil Es-Smairi ◽  
N Fazouan ◽  
El Houssine Atmani ◽  
E Maskar ◽  
Tuan Vu ◽  
...  

The structural, electronic, optical, and electrical properties of CuO were studied using the density functional theory (DFT) based on the Full Potential Linearized Augmented Plane Wave (FP-LAPW) method as implemented in the Wien2k code. The structural parameters are optimized by using the 4D-optimize option and the PBE-sol functional. The electronic and optical properties were analysed adopting Generalized Gradient approximation plus the screened Coulomb interaction (GGA+U) and the modified Becke-Johnson (GGA-TB-mBJ) potential for comparison. The calculated band energies have been used with the Boltzmann transport equation to calculate the thermoelectric properties. It is shown that the gap energy obtained by the (TB-mBJ) approximation potential is 2.02 eV more close to the experimental values comparing to that given by the GGA+U (Eg=1.57 eV). The optical properties reveal a high absorption coefficient in the UV region with an average transmittance of around 65% in the visible range, which covers a high range of light using TB-mBJ exchange potential and an average reflectivity of approximately 18% in visible light. The CuO conductivity is limited by the carrier mobility at low temperature and primarily defined by the carrier concentration at high temperature. These properties make CuO a promising material for solar cell applications as an absorbent layer and antireflection coating.


Sign in / Sign up

Export Citation Format

Share Document