Improved robust and adaptive filter based on non-holonomic constraints for RTK/INS integrated navigation

Author(s):  
Zhehua Yang ◽  
Zengke Li ◽  
Zan Liu ◽  
Chengcheng Wang ◽  
Yaowen Sun ◽  
...  
Sensors ◽  
2019 ◽  
Vol 19 (17) ◽  
pp. 3812 ◽  
Author(s):  
Shuqing Xu ◽  
Haiyin Zhou ◽  
Jiongqi Wang ◽  
Zhangming He ◽  
Dayi Wang

Among the methods of the multi-source navigation filter, as a distributed method, the federated filter has a small calculation amount with Gaussian state noise, and it is easy to achieve global optimization. However, when the state noise is time-varying or its initial estimation is not accurate, there will be a big difference with the true value in the result of the federated filter. For the systems with time-varying noise, adaptive filter is widely used for its remarkable advantages. Therefore, this paper proposes a federated Sage–Husa adaptive filter for multi-source navigation systems with time-varying or mis-estimated state noise. Because both the federated and the adaptive principles are different in updating the covariance of the state noise, it is required to weight the two updating methods to obtain a combined method with stability and adaptability. In addition, according to the characteristics of the system, the weighting coefficient is formed by the exponential function. This federated adaptive filter is applied to the SINS/CNS/GNSS integrated navigation, and the simulation results show that this method is effective.


2016 ◽  
Vol 69 (5) ◽  
pp. 1041-1060 ◽  
Author(s):  
Zengke Li ◽  
Jian Wang ◽  
Jingxiang Gao

In Global Positioning System/Inertial Navigation System (GPS/INS) integrated navigation, the low sampling rate of GPS receivers reduces the observability of state variables. GPS observation expansion is proposed to enhance the GPS/INS integrated navigation system. During the process of observation expansion, the state variables are updated by the same GPS information repeatedly. According to uncertainty theory, the probability density function of GPS observation information is analysed to demonstrate the feasibility of GPS observation expansion. The formula and calculation method of an adaptive filter algorithm are presented to control the uncertainty of GPS observation expansion. Furthermore, an experiment is performed to validate the new algorithm. The results indicate that compared with GPS/INS integrated navigation without observation expansion, the enhanced GPS/INS integrated navigation system can improve the position, velocity and attitude accuracy significantly, especially while a land vehicle is in slow motion. At the same time, the adaptive filter factor is introduced into the new algorithm, which can control the uncertainty caused by the expanded GPS observation.


Sign in / Sign up

Export Citation Format

Share Document