Crack width identification for underwater concrete structures using temperature tracer method

Author(s):  
Chanqing Zhang ◽  
Jiang Chen ◽  
Ying Luo ◽  
Feng Xiong
2020 ◽  
Vol 27 (9) ◽  
Author(s):  
Yuxuan Zhu ◽  
Jiang Chen ◽  
Yuanyuan Zhang ◽  
Feng Xiong ◽  
Fengfei He ◽  
...  

Author(s):  
Mirhat Medziti ◽  
Daia Zwicky

<p>According to Swiss code SIA 262 "Concrete structures", stirrups of reinforced concrete beams must "surround the tensile longitudinal reinforcement" and must "be anchored to mobilize the static height of internal forces". For existing concrete structures, Swiss code SIA 269/2 provides stirrup detailing requirements while limiting these directives for stirrup anchorage to the compression zone. In zones of negative bending, these requirements are often not satisfied for execution reasons. This question is addressed in a largely experimental Ra&amp;D project. Anchorage tests were performed and analyzed, with a total of 144 tests on 9 concrete beams. These underwent a longitudinal tensile force up to 1’000 kN to simulate transverse cracking at stirrup anchorages in negative flexure zones. The study parameters are crack width (0, 0.4 and 0.9 mm), stirrup diameter (10 and 14 mm), bar ribbing (smooth and ribbed) and hook angle (90°, 135°, 180° and straight bars). A design model based on the "tension chord model" (TCM) developed at ETH Zurich is proposed. This simple and practical design model has proved ist effectiveness to consider bond effects. Reduction factors for bar diameter (k<sub>Ø</sub>), relative bar ribbing (k<sub>fR</sub>), hook effect (k<sub>θ</sub>) and crack width (k<sub>w</sub>) were taken into account for calibration. Results of analytical calculations are coherent with experimental tests.</p>


Author(s):  
Reignard Tan ◽  
Terje Kanstad ◽  
Mette R. Geiker ◽  
Max A. N. Hendriks

<p>Motivated by the establishment of a Ferry-Free E39 coastal highway route, crack width calculation methods for design of large-scale concrete structures are discussed. It is argued that the current semi-empirical formulas recommended by Eurocode 2 is inconsistent and overly conservative for cross sections with large bar diameters and covers. A suggestion to formulating a more consistent crack width calculation method is given.</p>


2019 ◽  
Vol 289 ◽  
pp. 08005
Author(s):  
Martin Schneider ◽  
Georg Gardener

Corrosion of reinforcing steel has a great influence in reducing the lifetime of concrete structures; Carbonation of the concrete pore solution causes surface corrosion on the steel and diffusion of chloride ions through the capillary system of the concrete cover causes pitting corrosion on the steel surface. Corrosion of metals is highly dependent on the environmental conditions. Exposure to chloride ions can be critical to the service life of reinforced concrete structures. The durability of reinforced concrete structures exposed to deicing salt or marine environments can be affected by impact of chloride ions. Detection methods for the rate of corrosion of non-destructive and destructive procedures were analysed. The potential mapping applied on the concrete surface was discussed as a standard method for corrosion detection and will be explained in detail including the application boundaries of the method. It is assumed that the corrosion behaviour of reinforcing steel depends on crack widths. To analyse that, 8 coated and 8 uncoated test samples with different concrete strength classes were used. The concrete objects were exposed to a 3% sodium chloride solution. The corrosion behaviour of reinforcing steel is analysed by using potential mapping with different reference electrodes (Ag/AgCl and Cu/CuSO4). The results show a significant correlation between crack size and protection system on the surface. The maximum crack width with a low indication of corrosion was found to be 0.1 mm.


2014 ◽  
Vol 507 ◽  
pp. 242-244
Author(s):  
Kyung Joon Shin

Cracking is one of the most important factors in the serviceability as well as durability performance of concrete structures. Recently, it was recognized that a high performance fiber-reinforced cementitious composite (HPFRCC) provides a possible solution to this inherent problem of cracking by smearing one or several dominant cracks into many distributed microcracks. The purpose of the present study is to explore the ductility characteristics of HPFRCC. The permeability of HPFRCC after subjected to different load levels were measured to identify the effect of reduced cracking among the mixtures. It was confined that the permeability of proposed mixtures was lower than that without microfibers. This means that the proposed materials can reduce the crack width greatly at the same applied loads


2014 ◽  
Vol 23 (4) ◽  
pp. 045031 ◽  
Author(s):  
Benniu Zhang ◽  
Shuliang Wang ◽  
Xingxing Li ◽  
Xu Zhang ◽  
Guang Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document