negative bending
Recently Published Documents


TOTAL DOCUMENTS

130
(FIVE YEARS 44)

H-INDEX

11
(FIVE YEARS 2)

2022 ◽  
pp. 136943322110646
Author(s):  
Xinyi HE ◽  
Qingtian SU ◽  
Xu JIANG ◽  
Chong WU

The steel deck with rigid pavement has a lower risk of fatigue failure owing to the enhanced local rigidity. A reliable connection of steel plate and pavement and a convenient construction are critical concerns for this deck type. To seek a new application meeting the aforementioned requirements, this paper proposed a steel deck with adhesively bonded rigid pavement cast by non-reinforced ultra-high performance concrete (UHPC). To study the constructability and flexural properties of this deck type in a bridge deck system, four specimens including two with adhesively bonded connection and two reference ones with shear stud connection were fabricated and experimentally investigated by positive and negative bending tests. In addition, a simplified pretreatment of steel substrate was conducted before the application of epoxy resin to simulate the low quality of on-site construction. Experimental results indicate that the shear strength of the bonding connection with simplified steel pretreatment could decrease to half of that with strict preparation. Bending tests demonstrate that the adhesive bonding provides a more rigid connection between steel and concrete than shear studs did. The bonding failure load was 1.5 times the U-rib yielding load, indicating a high positive bending-carrying capacity of the deck. The adhesive provides better crack resistance than shear studs in negative bending. From a perspective on the bending behavior in the deck system, the adhesive bonding was reliable to obtain high bending capacities to resist actual vehicle loads. Besides, the non-uniform shrinkage of non-reinforced UHPC pavement can cause a 30% reduction of cracking strength.


2021 ◽  
Vol 8 (4) ◽  
pp. 617-625
Author(s):  
Ali Fadhil Naser ◽  
Hussam Ali Mohammed ◽  
Ayad Ali Mohammed

The results of linear static analysis explained that the increasing of pier heights was leaded to rise the values of positive bending moment, tensile stresses, and downward vertical deflection. Whereas the compressive stresses and negative bending moment were decreased, indicating that the structural performance of bridge structure representing by stiffness, bearing capacity of structural members, and elasticity will decrease and the bridges structures will be damaged. Therefore, the bridges structures need safe design when using tall piers by adopting high quality materials such as high strength concrete, more steel reinforcement, more prestressed tendons, and increasing of cross section dimensions of girders and piers. The results of modal analysis show that the un-loaded dynamic frequency for three types of bridges models were decreased when the pier heights were increased, indicating that the stiffness of bridges structure was became low with higher pier height. According to response spectra and time history analysis results, the loaded dynamic frequency (vibration state) and dynamic displacement were increased when the pier heights were increased, showing that the bridge of structure will suffer from high vibration when the pier height was high. It can be concluded that from this study, the piers heights have significant effects on the static and dynamic structural performance of bridges structures under traffic loads.


2021 ◽  
Vol 322 ◽  
pp. 185-192
Author(s):  
Jan L. Vítek ◽  
Lukáš Boháček ◽  
Robert Coufal ◽  
David Čítek

UHPC is a material which exhibits excellent mechanical properties and durability. Beside new structures it is also convenient for strengthening of existing structures. The paper investigates the possibilities of strengthening experimentally. A part of the experimental program is presented which is focused on bond of UHPC and existing concrete and on behaviour in bending. Acceptable bond may be achieved when the existing concrete is clean and reasonably rough. Structural elements are exposed to positive and negative bending moments. If UHPC overlay is applied, it works in compression and in tension. The experiments were therefore focused on verification of both alternatives (UHPC in compression and in tension). Finally, the conclusions from the experiments are drawn, which may be applied in practical design.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xueling Liu ◽  
Jinkai Yan ◽  
Bin Tong ◽  
Lei Liu

In this study, a large-scale model test was performed to investigate the effect of the single-row and double-row micropiles on the landside stabilization. For two different testing configuration settings, the bending moment along the micropiles, failure mode, and force condition were captured and compared. It is found that the landslide thrust on piles was distributed in a triangular shape. The piles in the front row carried greater pressure than the piles in the rear row. The resistance of the sliding body behind the pile was distributed in a parabolic shape, and mainly concentrated on the middle of the pile. The piles were destroyed due to the combined shearing and bending impact applied near the slipping surface. The boundary of the failure zone was from the position of two times the pile diameter under the slipping surface to the position of two and a half times the pile diameter above the slipping surface. Under the action of the landslide, each row of piles deformed at the same time. The capability of landslide stabilization for double-row piles was better than that of a single-row pile. The sections of the pile above slide surface were mainly subjected to negative bending moments and were distributed mainly within the pile length range of one-third of the anti-sliding section above the sliding surface. The pile body of the embedded section located in the range of ten times the pile diameter below the sliding surface was subjected to a positive bending moment.


2021 ◽  
pp. 136943322110339
Author(s):  
Jucan Dong ◽  
Yiyan Chen ◽  
Qingxiong Wu ◽  
Aoxiang Hu ◽  
Ruijuan Jiang ◽  
...  

A new type of composite structure, the composite box girder with corrugated steel webs (CSWs) and trusses, is proposed recently. In order to investigate the structural behavior under positive and negative bending moments, flexural tests of the continuous girder were carried out, and the failure modes, deformation patterns, strain distribution, and development of the concrete cracks were investigated. Finite element analysis was conducted to investigate the effect of the range of concrete in the steel tube and the thickness of CSWs on the flexural behavior. The experimental and numerical results show that the test beam has a good ductility and integrity under flexural load. The contribution of CSWs to the flexural bearing capacity is very small and can be neglected. Besides, the plane section assumption is still valid when only top concrete slab and bottom steel tubes are concerned. The concrete filled in bottom steel tubes increases the stiffness and the bearing capacity of the girder. Equations to calculate the flexural bearing capacity under positive and negative bending moments were put forward and then verified with experimental results.


Author(s):  
Aniruddha Chinchkhede

In the Bridge project, design and analysis include two main components: preliminary design and detailed design, to integrate Building Information Modeling (BIM) in the design process of the Bridge. Firstly 3D modelling of the Bridge needs to be carried out, that means. It has transferred 2D drawing into 3D models. The BIM mainly focuses on modelling analysis, detection and feedback and design. Cantilever bridge construction is a step-by-step construction of a cantilever in segments and stitching them to segments previously casted by prestressing. When the cantilever segments are added to both sides of the pier, the bending moment in Bridge is negative & increases with the addition of each segment. While key blocks are added, the Bridge is converted from cantilever form to continuous form & the negative bending moment on the pier decreases. In this project, a bridge model of span 130 m has been designed and analysed in midas civil to observe the rate of change of Bending moment, reactions and deflections at different stages of construction in construction sequence and Service conditions.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3662
Author(s):  
Qingyuan Xu ◽  
Hao Sun ◽  
Lexuan Wang ◽  
Lei Xu ◽  
Wei Chen ◽  
...  

In this paper, a high-speed train–CRTS III slab track–subgrade coupled dynamic model is established. With the model, the influence of vehicle number on the dynamic characteristics of a train–CRTS III slab track–subgrade coupled system with smooth and random track irregularity conditions for conventional and vibration-reduction CRTS III slab tracks are theoretically studied and analyzed. Some conclusions are drawn from the results: (1) the largest dynamic responses of the coupled system for all items and cases are no longer changed when the vehicle number exceeds three, and three vehicles are adequate to guarantee the simulation precision to investigate the dynamic responses of the coupled system. (2) The acceleration of the car body has almost no relation with the vehicle number, and only one vehicle is needed to study the vehicle dynamics using the train–CRTS III slab track–subgrade coupled dynamic model. (3) For the conventional CRTS III slab track on a subgrade, the vehicle number has a negligible influence on the accelerations of the rail, slab, and concrete base, the positive and negative bending moments of the rail, the compressive force of the fastener, and the positive bending stress of slab, but it has a large influence on the tension force of the fastener, and the negative bending stresses of the slab and concrete base. Only one vehicle is needed to study track dynamics without considering the tension force of the fastener, the negative bending stresses of the slab and concrete base, otherwise, two or more vehicles are required. (4) For vibration reduction of the CRTS III slab track on a subgrade, the number of vehicles has some influence on the dynamic responses of all track components, and at least two vehicles are required to investigate the track dynamics.


Sign in / Sign up

Export Citation Format

Share Document