Simulating intergranular hydrogen enhanced decohesion in aluminium using density functional theory

Author(s):  
Benjamin Wilson ◽  
Joseph Robson ◽  
Pratheek Shanthraj ◽  
Chris P Race

Abstract Materials modelling at the atomistic scale provides a useful way of investigating the widely debated fundamental mechanisms of hydrogen embrittlement in materials like aluminium alloys. Density functional theory based tensile tests of grain boundaries (GBs) can be used to understand the hydrogen enhanced decohesion mechanism (HEDE). The cohesive zone model was employed to understand intergranular fracture from energies obtained in electronic structure calculations at small separation increments during ab initio tensile tests of an aluminium Σ11 GB supercell with variable coverages of H. The standard rigid grain shift test and a quasistatic sequential test, which aims to be faster and more realistic than the rigid grain shift method, were implemented. Both methods demonstrated the effects of H on the cohesive strength of the interface. The sequential method showed discrete structural changes during decohesion, along with significant deformation in general compared to the standard rigid approach. H was found to considerably weaken the GB, where increasing H content led to enhanced embrittlement such that, for the highest coverages of H, GB strength was reduced to approximately 20% of the strength of a pure Al GB - it is proposed that these results simulate HEDE. The possibility of finding H coverages required to induce this effect in real alloy systems is discussed in context by using calculations of the heat of segregation of H.

2011 ◽  
Vol 10 (03) ◽  
pp. 381-390
Author(s):  
MANUEL ALBERTO FLORES-HIDALGO ◽  
DIANA BARRAZA-JIMÉNEZ ◽  
DANIEL GLOSSMAN-MITNIK

Zinc oxide ( ZnO ) electrical properties can be modified by addition of impurities or defects such as vacancies or other substances. We use sulfur ( S ) as a substitutional impurity and present a theoretical study on the characteristics of ZnO structures in its crystal form containing S in substitution of O . For theoretical calculations we used Density Functional Theory (DFT) with pseudopotentials and plane waves. ZnO in crystal form with S in substitution of O at heavy percentage was studied by analyzing properties like lattice characteristics, total energy, and gap energy. Lattice parameters a, b, c, and c/a ratio increase with the S -substituent percentage while the crystal stability decreases. Variation of gap energy shows a decreasing trend with increasing amount of substitution. In this paper, we provide a detailed data useful to identify the effects on ZnO in its crystal form when O is replaced by S that will help to predict if the structural changes on the modified ZnO structures may be suitable for applications in opto-electronics.


2018 ◽  
Vol 3 (2) ◽  
pp. 179-184
Author(s):  
Albert Zicko Johannes

Abstrak Peristiwa adsorpsi atom Hidrogen pada Grafena menyebabkan terjadinya perubahan struktur Grafena. Perubahan ini mempengaruhi keadaan densitas muatan Grafena. Pada simulasi ini posisi atom Hidrogen pada permukaan lembaran Grafena divariasikan, yaitu pada posisi tepat di atas atom Karbon (Top), posisi di tengah antara dua atom Karbon (Bridge), dan posisi pusat struktur heksagonal (Hollow). Simulasi dilakukan dengan metode Teori Fungsi Kerapatan dengan model Grafena ukuran 2x2. Hasil yang diperoleh menunjukkan adsorpsi atom Hidrogen memilih posisi Top sebagai yang paling stabil dibandingkan dengan posisi Bridge dan Hollow. Hasil dari posisi Top menunjukkan elektron dari atom Hidrogen digunakan mengikat Grafena dengan energi ikat sebesar -1.7 eV. Perubahan densitas muatan menunjukkan terjadinya perpindahan elektron menuju Grafena disertai transformasi isosurface yang unik untuk setiap posisi atom Hidrogen dengan perubahan terbesar terjadi pada posisi Top.  Kata kunci: Densitas muatan, Grafena, Adsorpsi, Teori Fungsi Kerapatan  Abstract [Title: The Simulation of Charge Density Diffrential for Hydrogen Atom - Graphene Adsorption with Density Functional Theory] Hydrogen atom adsorption on Graphene cause structural changes. This change affect Graphene charge density. In this simulation the position of Hydrogen atom on the surface of Graphene sheet are varied out, which is on the position directly above the Carbon atom (Top), the position on the middle between two Carbon atoms (Bridge), and the center position of the hexagonal structure (Hollow). The simulation is done by the Density Functional Theory method with a 2x2 size Graphene model. The results obtained showed that Hydrogen atom adsorption chose the Top position as the most balanced compared with the position of Bridge and Hollow. The results from the Top position indicate that electrons from Hydrogen atom are used to bind the Graphene with binding energy of -1.7 eV. The charge density differential indicate the occurrence of electron transfer towards Graphene accompanied by a transformation of the isosurface that are unique for each Hydrogen atom positions with the biggest change is shown in the Top position.  Keywords: Charge Density, Graphene, Adsorption, Density Functional Theory


2011 ◽  
Vol 485 ◽  
pp. 19-22
Author(s):  
Yoshiki Iwazaki ◽  
Tatsuo Sakashita ◽  
Toshimasa Suzuki ◽  
Youichi Mizuno ◽  
Shinji Tsuneyuki

Structural changes induced by oxygen vacancies in tetragonal phase BaTiO3are studied with first principles calculations within density functional theory. In our calculations, the incorporation of oxygen vacancies greatly decreases c/a ratio of the tetragonal phase BaTiO3, and a phase transition from tetragonal to cubic phase occurs when the incorporation of the oxygen vacancies reaches about 4%. Our results also shows that the generation of the oxygen vacancies slightly increases the volume of BaTiO3, and the increases are typically less than 0.5% even in heavily reduced conditions.


RSC Advances ◽  
2021 ◽  
Vol 11 (18) ◽  
pp. 10401-10415
Author(s):  
Daniel Díaz-Anichtchenko ◽  
Lourdes Gracia ◽  
Daniel Errandonea

Phase transitions induced by pressure in zinc pyrovanadate have been understood using density-functional theory calculations. Consequences of structural changes on electronic properties are discussed.


2018 ◽  
Vol 3 (3) ◽  
pp. 179-184
Author(s):  
Albert Zicko Johannes

Abstrak Peristiwa adsorpsi atom Hidrogen pada Grafena menyebabkan terjadinya perubahan struktur Grafena. Perubahan ini mempengaruhi keadaan densitas muatan Grafena. Pada simulasi ini posisi atom Hidrogen pada permukaan lembaran Grafena divariasikan, yaitu pada posisi tepat di atas atom Karbon (Top), posisi di tengah antara dua atom Karbon (Bridge), dan posisi pusat struktur heksagonal (Hollow). Simulasi dilakukan dengan metode Teori Fungsi Kerapatan dengan model Grafena ukuran 2x2. Hasil yang diperoleh menunjukkan adsorpsi atom Hidrogen memilih posisi Top sebagai yang paling stabil dibandingkan dengan posisi Bridge dan Hollow. Hasil dari posisi Top menunjukkan elektron dari atom Hidrogen digunakan mengikat Grafena dengan energi ikat sebesar -1.7 eV. Perubahan densitas muatan menunjukkan terjadinya perpindahan elektron menuju Grafena disertai transformasi isosurface yang unik untuk setiap posisi atom Hidrogen dengan perubahan terbesar terjadi pada posisi Top.  Kata kunci: Densitas muatan, Grafena, Adsorpsi, Teori Fungsi Kerapatan  Abstract [Title: The Simulation of Charge Density Diffrential for Hydrogen Atom - Graphene Adsorption with Density Functional Theory] Hydrogen atom adsorption on Graphene cause structural changes. This change affect Graphene charge density. In this simulation the position of Hydrogen atom on the surface of Graphene sheet are varied out, which is on the position directly above the Carbon atom (Top), the position on the middle between two Carbon atoms (Bridge), and the center position of the hexagonal structure (Hollow). The simulation is done by the Density Functional Theory method with a 2x2 size Graphene model. The results obtained showed that Hydrogen atom adsorption chose the Top position as the most balanced compared with the position of Bridge and Hollow. The results from the Top position indicate that electrons from Hydrogen atom are used to bind the Graphene with binding energy of -1.7 eV. The charge density differential indicate the occurrence of electron transfer towards Graphene accompanied by a transformation of the isosurface that are unique for each Hydrogen atom positions with the biggest change is shown in the Top position.  Keywords: Charge Density, Graphene, Adsorption, Density Functional Theory


Sign in / Sign up

Export Citation Format

Share Document