scholarly journals Global dynamics of a Lotka–Volterra competition patch model*

Nonlinearity ◽  
2021 ◽  
Vol 35 (2) ◽  
pp. 817-842
Author(s):  
Shanshan Chen ◽  
Junping Shi ◽  
Zhisheng Shuai ◽  
Yixiang Wu

Abstract The global dynamics of the two-species Lotka–Volterra competition patch model with asymmetric dispersal is classified under the assumptions that the competition is weak and the weighted digraph of the connection matrix is strongly connected and cycle-balanced. We show that in the long time, either the competition exclusion holds that one species becomes extinct, or the two species reach a coexistence equilibrium, and the outcome of the competition is determined by the strength of the inter-specific competition and the dispersal rates. Our main techniques in the proofs follow the theory of monotone dynamical systems and a graph-theoretic approach based on the tree-cycle identity.

2018 ◽  
Vol 11 (05) ◽  
pp. 1850068 ◽  
Author(s):  
Chuncheng Wang ◽  
Dejun Fan ◽  
Ling Xia ◽  
Xiaoyu Yi

In this paper, a multi-group SVIR epidemic model with age of vaccination is considered. The model allows the vaccinated individuals to become susceptible after the vaccine loses its protective properties, and the vaccination classes satisfy first-order the partial differential equations structured by vaccination age. Combining the Lyapunov functional method with a graph-theoretic approach, we show that the global stability of endemic equilibrium for the strongly connected system is determined by the basic reproduction number. In addition, the dynamics for non-strongly connected model are also investigated, depending on the basic reproduction numbers corresponding to each strongly connected component. Numerical simulations are carried out to support the theoretical conclusions.


Genetics ◽  
2003 ◽  
Vol 165 (4) ◽  
pp. 2235-2247
Author(s):  
Immanuel V Yap ◽  
David Schneider ◽  
Jon Kleinberg ◽  
David Matthews ◽  
Samuel Cartinhour ◽  
...  

AbstractFor many species, multiple maps are available, often constructed independently by different research groups using different sets of markers and different source material. Integration of these maps provides a higher density of markers and greater genome coverage than is possible using a single study. In this article, we describe a novel approach to comparing and integrating maps by using abstract graphs. A map is modeled as a directed graph in which nodes represent mapped markers and edges define the order of adjacent markers. Independently constructed graphs representing corresponding maps from different studies are merged on the basis of their common loci. Absence of a path between two nodes indicates that their order is undetermined. A cycle indicates inconsistency among the mapping studies with regard to the order of the loci involved. The integrated graph thus produced represents a complete picture of all of the mapping studies that comprise it, including all of the ambiguities and inconsistencies among them. The objective of this representation is to guide additional research aimed at interpreting these ambiguities and inconsistencies in locus order rather than presenting a “consensus order” that ignores these problems.


2020 ◽  
Vol 1706 ◽  
pp. 012115
Author(s):  
P Sangeetha ◽  
M Shanmugapriya ◽  
R Sundareswaran ◽  
K Sowmya ◽  
S Srinidhi

Sign in / Sign up

Export Citation Format

Share Document