Continuous non-invasive determination of nocturnal blood pressure variation using photoplethysmographic pulse wave signals: comparison of pulse propagation time, pulse transit time and RR-interval

2019 ◽  
Vol 40 (1) ◽  
pp. 014001 ◽  
Author(s):  
Christoph Fischer ◽  
Thomas Penzel
1997 ◽  
Vol 273 (1) ◽  
pp. H494-H500 ◽  
Author(s):  
C. J. Hartley ◽  
G. E. Taffet ◽  
L. H. Michael ◽  
T. T. Pham ◽  
M. L. Entman

Some transgenic mice have abnormal vascular function, but arterial geometry and dynamics are difficult to evaluate. To examine whether ultrasonic velocimetry could be used to determine arterial pulse-wave velocity (PWV) in mice, a custom-made 20-MHz pulsed Doppler instrument was used to obtain blood flow velocity signals from the aortic arch and the abdominal aorta 4 cm downstream. The upstroke (foot) of the velocity wave was timed at each site with respect to the R wave of the electrocardiogram, and PWV was calculated by dividing the separation distance by the difference in R-foot times. Doppler determinations were compared with invasive tonometry, and PWV was altered pharmacologically. It was found that the upstrokes of pressure (by tonometry) and velocity were coincident (+/-1 ms) and that PWV could be calculated by either method on exposed vessels. With the use of Doppler methods, pulse transit time was determined noninvasively with +/-1-ms resolution in 140 of 142 attempts in 82 mice. The calculated PWV in mice ranged from 220 to 850 cm/s with vasodilating anesthetics producing the low values and vasoconstricting agents producing the higher values. Thus PWV can be determined noninvasively in mice, is similar to that in other mammals, and responds as expected to vasoactive agents.


2008 ◽  
Vol 2 (3) ◽  
pp. 100
Author(s):  
A.W. Khir ◽  
N. Hadjiloizou ◽  
J. Feng ◽  
J.E. Davies ◽  
J. Mayet ◽  
...  

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 138077-138087
Author(s):  
Peyman Yousefian ◽  
Sungtae Shin ◽  
Azin Sadat Mousavi ◽  
Ali Tivay ◽  
Chang-Sei Kim ◽  
...  

Author(s):  
Ajay K. Verma ◽  
John Zanetti ◽  
Reza Fazel-Rezai ◽  
Kouhyar Tavakolian

Blood pressure is an indicator of a cardiovascular functioning and could provide early symptoms of cardiovascular system impairment. Blood pressure measurement using catheterization technique is considered the gold standard for blood pressure measurement [1]. However, due its invasive nature and complexity, non-invasive techniques of blood pressure estimation such as auscultation, oscillometry, and volume clamping have gained wide popularity [1]. While these non-invasive cuff based methodologies provide a good estimate of blood pressure, they are limited by their inability to provide a continuous estimate of blood pressure [1–2]. Continuous blood pressure estimate is critical for monitoring cardiovascular diseases such as hypertension and heart failure. Pulse transit time (PTT) is a time taken by a pulse wave to travel between a proximal and distal arterial site [3]. The speed at which pulse wave travels in the artery has been found to be proportional to blood pressure [1, 3]. A rise in blood pressure would cause blood vessels to increase in diameter resulting in a stiffer arterial wall and shorter PTT [1–3]. To avail such relationship with blood pressure, PTT has been extensively used as a marker of arterial elasticity and a non-invasive surrogate for arterial blood pressure estimation. Typically, a combination of electrocardiogram (ECG) and photoplethysmogram (PPG) or arterial blood pressure (ABP) signal is used for the purpose of blood pressure estimation [3], where the proximal and distal timing of PTT (also referred as pulse arrival time, PAT) is marked by R peak of ECG and a foot/peak of a PPG, respectively. In the literature, it has been shown that PAT derived using ECG-PPG combination infers an inaccurate estimate of blood pressure due to the inclusion of isovolumetric contraction period [1–3, 4]. Seismocardiogram (SCG) is a recording of chest acceleration due to heart movement, from which the opening and closing of the aortic valve can be obtained [5]. There is a distinct point on the dorso-ventral SCG signal that marks the opening of the aortic valve (annotated as AO). In the literature, AO has been proposed for timing the onset of the proximal pulse of the wave [6–8]. A combination of AO as a proximal pulse and PPG as a distal pulse has been used to derive pulse transit time and is shown to be correlated with blood pressure [7]. Ballistocardiogram (BCG) which is a measure of recoil forces of a human body in response to pumping of blood in blood vessels has also been explored as an alternative to ECG for timing proximal pulse [5, 9]. Use of SCG or BCG for timing the proximal point of a pulse can overcome the limitation of ECG-based PTT computation [6–7, 9]. However, a limitation of current blood pressure estimation systems is the requirement of two morphologically different signals, one for annotating the proximal (ECG, SCG, BCG) and other for annotating the distal (PPG, ABP) timing of a pulse wave. In the current research, we introduce a methodology to derive PTT from seismocardiograms alone. Two accelerometers were used for such purpose, one was placed on the xiphoid process of the sternum (marks proximal timing) and the other one was placed on the external carotid artery (marks distal timing). PTT was derived as a time taken by a pulse wave to travel between AO of both the xiphoidal and carotid SCG.


2017 ◽  
Vol 17 (01) ◽  
pp. 1750010 ◽  
Author(s):  
MED. ANES. BEREKSI-REGUIG ◽  
F. BEREKSI-REGUIG ◽  
A. NAIT ALI

Arterial stiffness is a strong determinant of cardiovascular risk. Pulse wave velocity (PWV) is an index of arterial stiffness, and its prognostic value has been repeatedly emphasized. The work presented in this paper is concerned with the design of a new system for measurement of the PWV and analysis. It is in fact related to the description of the hardware setup and the software development in order to measure and analyze the PWV. In the proposed system, the determination of the PWV is carried out through the measurement of the pulse wave transit time (PWTT) using the electrocardiogram (ECG) and the photoplethysmogram (PPG) and the distance separating the site of ejection of the systolic pulse and the site of measuring the PPG signal. The hardware setup therefore consists of an optical device to detect the PPG and electrodes to detect ECG, and different boards to process and digitalize these signals to be acquired in the PC and analyzed. The developed software is concerned with first, the acquisition and processing of both ECG and PPG signals then the determination of the PWV and finally its analysis for different subjects and conditions. The analysis of the PWV is carried out for subjects of different ages in different physiological conditions according to heart activity. The obtained results show that there is a high correlation ([Formula: see text]), between heart rate variability (HRV) and PWV. They also show that PWV increases with age. The analysis of the PWV variations with age is also carried out through different regression models. The obtained result shows that the cubic regression model best fits these variations.


VASA ◽  
2015 ◽  
Vol 44 (5) ◽  
pp. 341-348 ◽  
Author(s):  
Marc Husmann ◽  
Vincenzo Jacomella ◽  
Christoph Thalhammer ◽  
Beatrice R. Amann-Vesti

Abstract. Increased arterial stiffness results from reduced elasticity of the arterial wall and is an independent predictor for cardiovascular risk. The gold standard for assessment of arterial stiffness is the carotid-femoral pulse wave velocity. Other parameters such as central aortic pulse pressure and aortic augmentation index are indirect, surrogate markers of arterial stiffness, but provide additional information on the characteristics of wave reflection. Peripheral arterial disease (PAD) is characterised by its association with systolic hypertension, increased arterial stiffness, disturbed wave reflexion and prognosis depending on ankle-brachial pressure index. This review summarises the physiology of pulse wave propagation and reflection and its changes due to aging and atherosclerosis. We discuss different non-invasive assessment techniques and highlight the importance of the understanding of arterial pulse wave analysis for each vascular specialist and primary care physician alike in the context of PAD.


Sign in / Sign up

Export Citation Format

Share Document