scholarly journals Fundamentals and Applications of Hybrid LWFA-PWFA

2019 ◽  
Vol 9 (13) ◽  
pp. 2626 ◽  
Author(s):  
Bernhard Hidding ◽  
Andrew Beaton ◽  
Lewis Boulton ◽  
Sebastién Corde ◽  
Andreas Doepp ◽  
...  

Fundamental similarities and differences between laser-driven plasma wakefield acceleration (LWFA) and particle-driven plasma wakefield acceleration (PWFA) are discussed. The complementary features enable the conception and development of novel hybrid plasma accelerators, which allow previously not accessible compact solutions for high quality electron bunch generation and arising applications. Very high energy gains can be realized by electron beam drivers even in single stages because PWFA is practically dephasing-free and not diffraction-limited. These electron driver beams for PWFA in turn can be produced in compact LWFA stages. In various hybrid approaches, these PWFA systems can be spiked with ionizing laser pulses to realize tunable and high-quality electron sources via optical density downramp injection (also known as plasma torch) or plasma photocathodes (also known as Trojan Horse) and via wakefield-induced injection (also known as WII). These hybrids can act as beam energy, brightness and quality transformers, and partially have built-in stabilizing features. They thus offer compact pathways towards beams with unprecedented emittance and brightness, which may have transformative impact for light sources and photon science applications. Furthermore, they allow the study of PWFA-specific challenges in compact setups in addition to large linac-based facilities, such as fundamental beam–plasma interaction physics, to develop novel diagnostics, and to develop contributions such as ultralow emittance test beams or other building blocks and schemes which support future plasma-based collider concepts.

2016 ◽  
Vol 09 ◽  
pp. 63-83 ◽  
Author(s):  
Mark J. Hogan

Particle accelerators are the ultimate microscopes. They produce high energy beams of particles — or, in some cases, generate X-ray laser pulses — to probe the fundamental particles and forces that make up the universe and to explore the building blocks of life. But it takes huge accelerators, like the Large Hadron Collider or the two-mile-long SLAC linac, to generate beams with enough energy and resolving power. If we could achieve the same thing with accelerators just a few meters long, accelerators and particle colliders could be much smaller and cheaper. Since the first theoretical work in the early 1980s, an exciting series of experiments have aimed at accelerating electrons and positrons to high energies in a much shorter distance by having them “surf” on waves of hot, ionized gas like that found in fluorescent light tubes. Electron-beam-driven experiments have measured the integrated and dynamic aspects of plasma focusing, the bright flux of high energy betatron radiation photons, particle beam refraction at the plasma–neutral-gas interface, and the structure and amplitude of the accelerating wakefield. Gradients spanning kT/m to MT/m for focusing and 100[Formula: see text]MeV/m to 50[Formula: see text]GeV/m for acceleration have been excited in meter-long plasmas with densities of 10[Formula: see text]–10[Formula: see text][Formula: see text]cm[Formula: see text], respectively. Positron-beam-driven experiments have evidenced the more complex dynamic and integrated plasma focusing, 100[Formula: see text]MeV/m to 5[Formula: see text]GeV/m acceleration in linear and nonlinear plasma waves, and explored the dynamics of hollow channel plasma structures. Strongly beam-loaded plasma waves have accelerated beams of electrons and positrons with hundreds of pC of charge to over 5[Formula: see text]GeV in meter scale plasmas with high efficiency and narrow energy spread. These “plasma wakefield acceleration” experiments have been mounted by a diverse group of accelerator, laser and plasma researchers from national laboratories and universities around the world. This article reviews the basic principles of plasma wakefield acceleration with electron and positron beams, the current state of understanding, the push for first applications and the long range R&D roadmap toward a high energy collider.


Author(s):  
M. Wing

New particle acceleration schemes open up exciting opportunities, potentially providing more compact or higher-energy accelerators. The AWAKE experiment at CERN is currently taking data to establish the method of proton-driven plasma wakefield acceleration. A second phase aims to demonstrate that bunches of about 10 9 electrons can be accelerated to high energy, preserving emittance and that the process is scalable with length. With this, an electron beam of O (50 GeV) could be available for new fixed-target or beam-dump experiments searching for the hidden sector, like dark photons. The rate of electrons on target could be increased by a factor of more than 1000 compared to that currently available, leading to a corresponding increase in sensitivity to new physics. Such a beam could also be brought into collision with a high-power laser and thereby probe the completely unmeasured region of strong fields at values of the Schwinger critical field. An ultimate goal is to produce an electron beam of O (3 TeV) and collide with an Large Hadron Collider proton beam. This very high-energy electron–proton collider would probe a new regime in which the structure of matter is completely unknown. This article is part of the Theo Murphy meeting issue ‘Directions in particle beam-driven plasma wakefield acceleration’.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
P. K. Singh ◽  
F.-Y. Li ◽  
C.-K. Huang ◽  
A. Moreau ◽  
R. Hollinger ◽  
...  

AbstractIntense lasers can accelerate electrons to very high energy over a short distance. Such compact accelerators have several potential applications including fast ignition, high energy physics, and radiography. Among the various schemes of laser-based electron acceleration, vacuum laser acceleration has the merits of super-high acceleration gradient and great simplicity. Yet its realization has been difficult because injecting free electrons into the fast-oscillating laser field is not trivial. Here we demonstrate free-electron injection and subsequent vacuum laser acceleration of electrons up to 20 MeV using the relativistic transparency effect. When a high-contrast intense laser drives a thin solid foil, electrons from the dense opaque plasma are first accelerated to near-light speed by the standing laser wave in front of the solid foil and subsequently injected into the transmitted laser field as the opaque plasma becomes relativistically transparent. It is possible to further optimize the electron injection/acceleration by manipulating the laser polarization, incident angle, and temporal pulse shaping. Our result also sheds light on the fundamental relativistic transparency process, crucial for producing secondary particle and light sources.


2020 ◽  
Vol 1 (8) ◽  
pp. 2797-2803
Author(s):  
Jaegeon Ryu ◽  
Minjun Je ◽  
Wooyeong Choi ◽  
Soojin Park

A salt-mediated, efficient and scalable extraction method enables the preparation of well-segregated, high-quality, nanoscale silicon building blocks for the high-energy density lithium-ion full battery.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
M. Ghoranneviss ◽  
A. Salar Elahi

Discovery of the laser in 1960 hopes were based on using its very high energy concentration within very short pulses of time and very small volumes for energy generation from nuclear fusion as “Inertial Fusion Energy” (IFE), parallel to the efforts to produce energy from “Magnetic Confinement Fusion” (MCF), by burning deuterium-tritium (DT) in high temperature plasmas to helium. Over the years the fusion gain was increased by a number of magnitudes and has reached nearly break-even after numerous difficulties in physics and technology had been solved. After briefly summarizing laser driven IFE, we report how the recently developed lasers with pulses of petawatt power and picosecond duration may open new alternatives for IFE with the goal to possibly ignite solid or low compressed DT fuel thereby creating a simplified reactor scheme. Ultrahigh acceleration of plasma blocks after irradiation of picosecond (PS) laser pulses of around terawatt (TW) power in the range of 1020 cm/s2was discovered by Sauerbrey (1996) as measured by Doppler effect where the laser intensity was up to about 1018 W/cm2. This is several orders of magnitude higher than acceleration by irradiation based on thermal interaction of lasers has produced.


Author(s):  
D.A Jaroszynski ◽  
R Bingham ◽  
E Brunetti ◽  
B Ersfeld ◽  
J Gallacher ◽  
...  

Plasma waves excited by intense laser beams can be harnessed to produce femtosecond duration bunches of electrons with relativistic energies. The very large electrostatic forces of plasma density wakes trailing behind an intense laser pulse provide field potentials capable of accelerating charged particles to high energies over very short distances, as high as 1 GeV in a few millimetres. The short length scale of plasma waves provides a means of developing very compact high-energy accelerators, which could form the basis of compact next-generation light sources with unique properties. Tuneable X-ray radiation and particle pulses with durations of the order of or less than 5 fs should be possible and would be useful for probing matter on unprecedented time and spatial scales. If developed to fruition this revolutionary technology could reduce the size and cost of light sources by three orders of magnitude and, therefore, provide powerful new tools to a large scientific community. We will discuss how a laser-driven plasma wakefield accelerator can be used to produce radiation with unique characteristics over a very large spectral range.


2009 ◽  
Vol 27 (2) ◽  
pp. 233-241 ◽  
Author(s):  
B. Malekynia ◽  
M. Ghoranneviss ◽  
H. Hora ◽  
G.H. Miley

AbstractThe anomaly at laser plasma interaction at laser pulses of TW to PW power and ps duration led to a very unique generation of quasi-neutral plasma blocks by a skin layer interaction avoiding the relativistic self-focusing. This is in contrast to numerous usual experiments. The plasma blocks have ion current densities above 1011A/cm2and may be used for a fast ignition scheme with comparably low compression of the deuterium tritium (DT) fuel. The difficulty is that a very high energy flux densityE* of the ions is necessary according to the hydrodynamic theory (Bobin, 1971, 1974; Chu, 1972). This theory did not include the later discovered collective effect for the stopping power of the alpha particles. One problem is being discussed, whether the Bethe-Bloch binary collision theory or the collective collision theory of Gabor has to be applied. The inclusion of the collective effect results in a reduction of the threshold value ofE* for ignition by a factor of about fife.


2011 ◽  
Vol 01 ◽  
pp. 151-156
Author(s):  
FENG-YIN CHANG ◽  
PISIN CHEN ◽  
GUEY-LIN LIN ◽  
ROBERT NOBLE ◽  
RICHARD SYDORA

Magnetowave induced plasma wakefield acceleration (MPWA) in a relativistic astrophysical outflow has been proposed as a viable mechanism for the acceleration of cosmic particles to ultra high energies. In this paper we present the relativistic MPWA theory and confirm such a concept via the plasma simulation. Invoking Active Galactic Nuclei (AGN) as the site, we show that MPWA production of ultra high energy cosmic rays (UHECR) beyond ZeV (1021 eV) is possible.


Author(s):  
Michael Stumpf ◽  
Matthias Melchger ◽  
Severin Georg Montag ◽  
Georg Pretzler

Abstract We present an optical setup for well-defined ionization inside a plasma such that precisely controlled spots of high electron density can be generated. We propose to use the setup for Trojan Horse Injection (or Plasma Photocathode Emission) where a collinear laser beam is needed to release electrons inside a plasma wakefield. The reflection-based setup allows a suitable manipulation of the laser near field without disturbing the spectral phase of the laser pulses. A required ionization state and volume can be reached by tuning the beam size, pulse duration and pulse energy. The ionization simulations enable a prediction of the ionization spot and are in good agreement with dedicated experiments which measured the number of electrons created during the laser-gas interaction.


Sign in / Sign up

Export Citation Format

Share Document