scholarly journals Study of turbulence intermittency in linear magnetized plasma

2019 ◽  
Vol 61 (11) ◽  
pp. 115010 ◽  
Author(s):  
Boyu Zhang ◽  
Shigeru Inagaki ◽  
Kazunobu Hasamada ◽  
Kotaro Yamasaki ◽  
Fumiyoshi Kin ◽  
...  
2006 ◽  
Author(s):  
David D. Blackwell ◽  
David N. Walker ◽  
Sarah J. Messer ◽  
William E. Amatucci

2019 ◽  
Vol 26 (10) ◽  
pp. 103101
Author(s):  
Chong Lv ◽  
Bao-Zhen Zhao ◽  
Feng Wan ◽  
Hong-Bo Cai ◽  
Xiang-Hao Meng ◽  
...  

2021 ◽  
Vol 87 (3) ◽  
Author(s):  
R.A. López ◽  
S.M. Shaaban ◽  
M. Lazar

Space plasmas are known to be out of (local) thermodynamic equilibrium, as observations show direct or indirect evidences of non-thermal velocity distributions of plasma particles. Prominent are the anisotropies relative to the magnetic field, anisotropic temperatures, field-aligned beams or drifting populations, but also, the suprathermal populations enhancing the high-energy tails of the observed distributions. Drifting bi-Kappa distribution functions can provide a good representation of these features and enable for a kinetic fundamental description of the dispersion and stability of these collision-poor plasmas, where particle–particle collisions are rare but wave–particle interactions appear to play a dominant role in the dynamics. In the present paper we derive the full set of components of the dispersion tensor for magnetized plasma populations modelled by drifting bi-Kappa distributions. A new solver called DIS-K (DIspersion Solver for Kappa plasmas) is proposed to solve numerically the dispersion relations of high complexity. The solver is validated by comparing with the damped and unstable wave solutions obtained with other codes, operating in the limits of drifting Maxwellian and non-drifting Kappa models. These new theoretical tools enable more realistic characterizations, both analytical and numerical, of wave fluctuations and instabilities in complex kinetic configurations measured in-situ in space plasmas.


2021 ◽  
Vol 11 (9) ◽  
pp. 3844
Author(s):  
Konstantinos P. Prokopidis ◽  
Dimitrios C. Zografopoulos

A novel finite-difference time-domain formulation for the modeling of general anisotropic dispersive media is introduced in this work. The method accounts for fully anisotropic electric or magnetic materials with all elements of the permittivity and permeability tensors being non-zero. In addition, each element shows an arbitrary frequency dispersion described by the complex-conjugate pole–residue pairs model. The efficiency of the technique is demonstrated in benchmark numerical examples involving electromagnetic wave propagation through magnetized plasma, nematic liquid crystals and ferrites.


Optik ◽  
2021 ◽  
pp. 167601
Author(s):  
Vinit Kakkar ◽  
Keshav Walia ◽  
Yachna Tyagi ◽  
Khushboo Sharma ◽  
Deepak Tripathi

Sign in / Sign up

Export Citation Format

Share Document