scholarly journals Soliton generation and drift wave turbulence spreading via geodesic acoustic mode excitation

Author(s):  
Ningfei Chen ◽  
Shizhao Wei ◽  
Guangyu Wei ◽  
Zhiyong Qiu

Abstract The two-field equations governing fully nonlinear dynamics of the drift wave (DW) and geodesic acoustic mode (GAM) interaction in toroidal geometry are derived in the nonlinear gyrokinetic framework. Two stages with distinctive features are identified and analyzed by both analytical and numerical approaches. In the linear growth stage, the derived set of nonlinear equations can be reduced to the intensively studied parametric decay instability (PDI), accounting for the spontaneous resonant excitation of GAM by DW. The main results of previous works on spontaneous GAM excitation, e.g., the much enhanced GAM group velocity and the nonlinear growth rate of GAM, are reproduced from the numerical solution of the two-field equations. In the fully nonlinear stage, soliton structures are observed to form due to the balancing of the self-trapping effect by the spontaneously excited GAM and kinetic dispersiveness of DW. The soliton structures enhance turbulence spreading from DW linearly unstable to stable region, exhibiting convective propagation instead of typical linear dispersive process, and is thus, expected to induce core-edge interaction and nonlocal transport.

2012 ◽  
Vol 78 (6) ◽  
pp. 651-655 ◽  
Author(s):  
JUN YU ◽  
J. Q. DONG ◽  
X. X. LI ◽  
D. DU ◽  
X. Y. GONG

AbstractExcitation of the geodesic acoustic mode continuum by drift wave turbulence is studied using the wave kinetic approach. For a model profile of weak non-uniform ion temperature, the forms of growth rate and radial structure of geodesic acoustic modes are obtained analytically. The growth rate is analyzed for several conditions for present-day tokamaks and compared with that for uniform ion temperature, as well as that given by the coherent mode approach for non-uniform ion temperature.


2021 ◽  
Author(s):  
Liu Zhao-Yang ◽  
Zhang Yang-Zhong ◽  
Swadesh Mitter Mahajan ◽  
Liu A-Di ◽  
Zhou Chu ◽  
...  

Abstract There are two distinct phases in the evolution of drift wave envelope in the presence of zonal flow. A long-lived standing wave phase, which we call the Caviton, and a short-lived traveling wave phase (in radial direction) we call the Instanton. Several abrupt phenomena observed in tokamaks, such as intermittent excitation of geodesic acoustic mode (GAM) shown in this paper, could be attributed to the sudden and fast radial motion of Instanton. The composite drift wave – zonal flow system evolves at the two well-separate scales: the micro and the meso-scale. The eigenmode equation of the model defines the zero order (micro-scale) variation; it is solved by making use of the two dimensional (2D) weakly asymmetric ballooning theory (WABT), a theory suitable for modes localized to rational surface like drift waves, and then refined by shifted inverse power method, an iterative finite difference method. The next order is the equation of electron drift wave (EDW) envelope (containing group velocity of EDW) which is modulated by the zonal flow generated by Reynolds stress of EDW. This equation is coupled to the zonal flow equation, and numerically solved in spatiotemporal representation; the results are displayed in self-explanatory graphs. One observes a strong correlation between the Caviton-Instanton transition and the zero-crossing of radial group velocity of EDW. The calculation brings out the defining characteristics of the Instanton: it begins as a linear traveling wave right after the transition. Then, it evolves to a nonlinear stage with increasing frequency all the way to 20 kHz. The modulation to Reynolds stress in zonal flow equation brought in by the nonlinear Instanton will cause resonant excitation to GAM. The intermittency is shown due to the random phase mixing between multiple central rational surfaces in the reaction region.


1994 ◽  
Vol 1 (5) ◽  
pp. 1142-1153 ◽  
Author(s):  
K. L. Sidikman ◽  
B. A. Carreras ◽  
P. H. Diamond ◽  
L. Garcia

1996 ◽  
Vol 38 (12) ◽  
pp. 2143-2154 ◽  
Author(s):  
Thomas Sunn Pedersen ◽  
Poul K Michelsen ◽  
Jens Juul Rasmussen

Sign in / Sign up

Export Citation Format

Share Document