toroidal plasmas
Recently Published Documents


TOTAL DOCUMENTS

453
(FIVE YEARS 25)

H-INDEX

45
(FIVE YEARS 3)

Author(s):  
Ge Dong ◽  
Zhihong Lin

Abstract The clear understanding of the wave-particle interaction and associated transport mechanism of different particle species in the drift wave instabilities is important for accurate modeling and predictions of the plasma confinement properties. Our global gyrokinetic simulations find that electron particle and heat transport decreases to a very low level, while ion heat transport level has no dramatic change when wave-particle resonance is suppressed in the collisionless trapped electron mode (CTEM) turbulence in the tokamak core. Similarly, ion heat transport in the self-consistent ion temperature gradient (ITG) turbulence simulation is qualitatively similar to that in the test-particle simulation using the static ITG turbulence fields. These simulation results show that electron transport is primarily driven by the wave-particle resonance in the CTEM turbulence, but the ion transport is mostly driven by the nonlinear wave-particle scattering in both the CTEM and ITG turbulence.


2021 ◽  
Vol 87 (6) ◽  
Author(s):  
Chjan C. Lim

An equilibrium statistical mechanics theory for the Hasegawa–Mima equations of toroidal plasmas, with canonical constraint on energy and microcanonical constraint on potential enstrophy, is solved exactly as a spherical model. The use of a canonical energy constraint instead of a fixed-energy microcanonical approach is justified by the preference for viewing real plasmas as an open system. A significant consequence of the results obtained from the partition function, free energy and critical temperature, is the condensation into a ground state exhibiting a blob-hole-like structure observed in real plasmas.


2021 ◽  
Author(s):  
Yao yao ◽  
Songfen Liu ◽  
Kaien Zhu ◽  
Wei Kong ◽  
Jiquan Li ◽  
...  

Abstract Trapped electron modes (TEMs) in tokamak plasmas with anisotropies of electron temperature and its gradient are studied by solving the gyrokinetic integral eigenmode equation. Detailed numerical analyses indicate that, in comparison with that in plasmas of isotropic electron temperature, TEMs are enhanced (weakened) by the anisotropy with temperature in the direction perpendicular to magnetic field higher (lower) than that in the direction parallel to the magnetic field when the latter is kept constant. However, the enhancement is limited such that TEMs are weakened rapidly and even stabilized when the anisotropy is higher than a critic value owing to an effective reduction of bounce movement of the trapped electrons. In addition, it is found that the gradients of perpendicular and parallel temperatures of electrons have driving and suppressing effects on the TEMs, respectively. The overall effects of the temperature gradients of electrons and ions, magnetic shear, safety factor, density gradient on TEMs in the presence of the anisotropies are presented in detail.


2021 ◽  
Vol 28 (9) ◽  
pp. 092506
Author(s):  
E. Rodríguez ◽  
A. Bhattacharjee
Keyword(s):  

2021 ◽  
Author(s):  
M X Jia ◽  
Jingchun Li ◽  
Songfen Liu ◽  
Wei Kong ◽  
Kaien Zhu ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
J. E. Lee ◽  
P. H. Seo ◽  
J. G. Bak ◽  
G. S. Yun

AbstractExperimental observations assisted by 2-D imaging diagnostics on the KSTAR tokamak show that a solitary perturbation (SP) emerges prior to a boundary burst of magnetized toroidal plasmas, which puts forward SP as a potential candidate for the burst trigger. We have constructed a machine learning (ML) model based on a convolutional deep neural network architecture for a statistical study to identify the SP as a boundary burst trigger. The ML model takes sequential signals detected from 19 toroidal Mirnov coils as input and predicts whether each temporal frame corresponds to an SP. We trained the network in a supervised manner on a training set consisting of real signals with manually annotated SP locations and synthetic burst signals. The trained model achieves high performances in various metrics on a test data set. We also demonstrated the reliability of the model by visualizing the discriminative parts of the input signals that the model recognizes. Finally, we applied the trained model to new data from KSTAR experiments, which were never seen during training, and confirmed that the large burst at the plasma boundary that can fatally damage the fusion device always involves the emergence of SP. This result suggests that the SP is a key to understanding and controlling of the boundary burst in magnetized toroidal plasmas.


2020 ◽  
Vol 86 (5) ◽  
Author(s):  
M. V. Falessi ◽  
N. Carlevaro ◽  
V. Fusco ◽  
E. Giovannozzi ◽  
P. Lauber ◽  
...  

In this work, the FALCON code is adopted for illustrating the features of shear Alfvén and sound continuous spectra in toroidal fusion plasmas. The FALCON codes employ the local Floquet analysis discussed in (Phys. Plasmas, vol. 26, issue 8, 2019, 082502) for computing global structures of continuous spectra in general toroidal geometry. As particular applications, reference equilibria for the divertor tokamak test and ASDEX Upgrade plasmas are considered. In particular, we illustrate the importance of mode polarization for recognizing the physical relevance of the various branches of the continuous spectra in the ideal magnetohydrodynamics limit. We also analyse the effect of plasma compression and the validity of the slow sound approximation.


2020 ◽  
Vol 60 (11) ◽  
pp. 112006 ◽  
Author(s):  
Ya.I. Kolesnichenko ◽  
A.V. Tykhyy ◽  
R.B. White
Keyword(s):  

2020 ◽  
Vol 62 (9) ◽  
pp. 095013
Author(s):  
Jingchun Li ◽  
X T Ding ◽  
J Q Dong ◽  
S F Liu

Sign in / Sign up

Export Citation Format

Share Document