scholarly journals Characterization of ion-irradiation-induced defects in multi-walled carbon nanotubes

2011 ◽  
Vol 13 (7) ◽  
pp. 073004 ◽  
Author(s):  
Ossi Lehtinen ◽  
Timur Nikitin ◽  
Arkady V Krasheninnikov ◽  
Litao Sun ◽  
Florian Banhart ◽  
...  
1970 ◽  
Vol 46 (1) ◽  
pp. 9-16 ◽  
Author(s):  
AKM Fazle Kibria

The effects of irradiation on the structure of purified multi-walled carbon nanotubes (MWCNTs) having 6-19 graphitic shells and outer diameters of 8.15-17.11 nm were investigated using electron beam of energies 200 keV and dose of 2.16 x 1017 e cm-2s-1. It was observed that the electron irradiation created a number of chronological alterations in the tube structures. These were identified to be tube contraction, destruction of the innermost graphitic shell, deformation of graphitic shells and its proliferation, break down of the graphitic shells and their spreading into the tube hole and finally the destruction of the whole tube. MWCNTs having the largest innermost diameter found suffer from the highest contraction. The tube contraction behavior found stops when the innermost graphitic shell starts to destroy. Irradiation affected the innermost graphitic shell first and that of the smallest diameter was the more rapidly. It occurred probably due to having the highest curvature value. Tubes having inner shell of diameter about 4.8 nm suffer from fractional destruction within 5-15 s of irradiation exposure. Such a shell was ruined within 1 minute of irradiation exposure but that of diameter 7.0 nm was survived up to 2 minutes. It seems that the irradiation induced defects created in the MWCNTs can be used for the diversified applications of nanotubes such as the hydrogen storage enhancement in them. Keywords: Carbon nanotube; Electron irradiation; Tube contraction; Innermost shell; Defect. DOI: http://dx.doi.org/10.3329/bjsir.v46i1.8099 Bangladesh J. Sci. Ind. Res. 46(1), 9-16, 2011  


2012 ◽  
Vol 18 (S2) ◽  
pp. 1316-1317
Author(s):  
M.J. Guinel ◽  
N. Brodusch ◽  
R. Gauvin ◽  
Y. Verde-Gomez ◽  
B. Escobar-Morales

Extended abstract of a paper presented at Microscopy and Microanalysis 2012 in Phoenix, Arizona, USA, July 29 – August 2, 2012.


Carbon ◽  
2011 ◽  
Vol 49 (1) ◽  
pp. 24-36 ◽  
Author(s):  
Kevin A. Wepasnick ◽  
Billy A. Smith ◽  
Kaitlin E. Schrote ◽  
Hannah K. Wilson ◽  
Stephen R. Diegelmann ◽  
...  

Author(s):  
Huynh Anh Hoang ◽  
Huynh Quyen

Since the end of the 20th century, nanomaterials such as carbon nanotubes (CNTs) have been considered as one of the greatest achievements in the field of material science. Nowadays, further research on CNTs is still being conducted to unfold the full potential of this material. Generally, CNTs production methods have been extensively studied, specifically on CNTs synthesis route via liquefied hydrocarbon gas in the presence of a catalyst. From the synthesized material, further investigation including characterization and investigation of this nano size system’s effects on the physics, chemical, mechanical rules applied to macroscopic (bulk materials) and microscopic systems (atoms, molecules). In this present work, we demonstrated the research results of the synthesis of nano-carbon materials from a liquefied hydrocarbon gas (Liquefied Petroleum Gas: LPG) and its application to red phenol absorption in the liquid phase. CNTs used in this study were synthesized by chemical vapor deposition (CVD) method with Fe /ℽ-Al2O3 as the catalyst. The research results demonstrated that CNTs synthesized from LPG in this work were reported to be multi-walled tubes (MWCNTs: Multi-Walled Carbon Nanotubes) with physical characteristics including average internal and external diameters were of 6 nm and 17 nm, respectively. The measured specific surface suggested by BET data was 200 m2/g. The experimental study of red phenol adsorption by MWCNTs showed that the adsorption process followed both Freundlich and Langmuir isotherm adsorption models with the maximum monolayer adsorption capacity of 47.2 mg/g. The research results again showed that it was possible to synthesize MWCNTs from hydrocarbon gas sources via the CVD method by utilizing catalysts. Additionally, red phenol absorption via such material had shown to follow both Freundlich and Langmuir isotherm model, which allow further characterization of this material using Raman, EDX, SEM, TEM, BET, in order to extend the library database on the characterization of the reported synthesized material.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Shuang-Xi Xue ◽  
Qin-Tao Li ◽  
Xian-Rui Zhao ◽  
Qin-Yi Shi ◽  
Zhi-Gang Li ◽  
...  

Multi-walled carbon nanotubes (MWCNTs) were irradiated by 1.2 keV Ar ion beams for 15–60 min at room temperature with current density of 60 µA/cm2. The morphology and microstructure are investigated by scanning electron microscopy, transmission electron microscopy and Raman spectroscopy. The results show that carbon nanofibers are achieved after 60 min ion irradiation and the formation of carbon nanofibers proceeds through four periods, carbon nanotubes—amorphous carbon nanowires—carbon nanoparticles along the tube axis—conical protrusions on the nanoparticles surface—carbon nanofibers from the conical protrusions.


2014 ◽  
Vol 23 (01n02) ◽  
pp. 1420001 ◽  
Author(s):  
Carol Jenkins ◽  
Melissa Cruz ◽  
Jen Depalma ◽  
Michael Conroy ◽  
Barbara Benardo ◽  
...  

As novel theories and uses of carbon nanotubes (CNT) advance, it becomes increasingly important to characterize the methods of production. One such method of CNT production uses a liquid phase precursor (hydrocarbon with nanoparticle catalyst mix) that is injected into a tube furnace with a flowing carrier gas. The CNTs are grown in high purity and are collected on the surface of the quartz tube. The system allows for a number of variables to be tested such as growth temperatures, flow rate of the carrier gas, precursor injection rates and variations of precursor mix however, here only thermal effects are considered. Under thermal conditions ranging from 500 to 850°C, multi-walled carbon nanotubes (MWCNTs) are synthesized and characterized to determine inner and outer diameter as well as tube thickness.


Sign in / Sign up

Export Citation Format

Share Document