irradiation induced defects
Recently Published Documents


TOTAL DOCUMENTS

384
(FIVE YEARS 49)

H-INDEX

32
(FIVE YEARS 4)

Crystals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1404
Author(s):  
Ivana Capan ◽  
Tomislav Brodar ◽  
Takahiro Makino ◽  
Vladimir Radulovic ◽  
Luka Snoj

We report on the metastable defects introduced in the n-type 4H-SiC material by epithermal and fast neutron irradiation. The epithermal and fast neutron irradiation defects in 4H-SiC are much less explored compared to electron or proton irradiation-induced defects. In addition to the carbon vacancy (Vc), silicon vacancy (Vsi) and carbon antisite-carbon vacancy (CAV) complex, the neutron irradiation has introduced four deep-level defects, all arising from the metastable defect, the M-center. The metastable deep-level defects were investigated by deep level transient spectroscopy (DLTS), high-resolution Laplace DLTS (L-DLTS) and isothermal DLTS. The existence of the fourth deep-level defect, M4, recently observed in ion-implanted 4H-SiC, has been additionally confirmed in neutron-irradiated samples. The isothermal DLTS technique has been proven as a useful tool for studying the metastable defects.


Author(s):  
Ivana Capan ◽  
Tomislav Brodar ◽  
Takahiro Makino ◽  
Vladimir Radulovic ◽  
Luka Snoj

We report on metastable defects introduced in n-type 4H-SiC material by epithermal and fast neutron irradiation. The epithermal and fast neutron irradiation defects in 4H-SiC are much less explored compared to electron or proton irradiation induced defects. In addition to silicon vacancy (Vsi) and carbon antisite-carbon vacancy (CAV) complex, the neutron irradiation has introduced four deep level defects, all arising from the metastable defect, the M-center. The metastable deep level defects were investigated by deep level transient spectroscopy (DLTS), high-resolution Laplace DLTS (L-DLTS) and isothermal DLTS. The existence of the fourth deep level M4, recently observed in ion implanted 4H-SiC, has been additionally confirmed in neutron irradiated samples. The isothermal DLTS technique has been proven as a useful tool for studying the metastable defects.


2021 ◽  
Author(s):  
Martin Hafermann ◽  
Robin Schock ◽  
Chenghao Wan ◽  
Jura Rensberg ◽  
Mikhail Kats ◽  
...  

2021 ◽  
Vol 874 ◽  
pp. 159751
Author(s):  
Fang Li ◽  
Cheng Chen ◽  
Daxi Guo ◽  
Xiong Zhou ◽  
Yiheng Chen ◽  
...  

2021 ◽  
Vol 27 (S1) ◽  
pp. 2904-2905
Author(s):  
Kayla Yano ◽  
Aaron Kohnert ◽  
Tiffany Kaspar ◽  
Sandra Taylor ◽  
Steven Spurgeon ◽  
...  

2021 ◽  
Vol 129 (21) ◽  
pp. 215901
Author(s):  
M. Haseman ◽  
C. B. Somodi ◽  
P. Stepanov ◽  
D. E. Wall ◽  
L. A. Boatner ◽  
...  

Author(s):  
Franziska Schmidt ◽  
Peter Hosemann ◽  
Raluca O. Scarlat ◽  
Daniel K. Schreiber ◽  
John R. Scully ◽  
...  

The next generation of nuclear reactors will expose materials to conditions that, in some cases, are even more extreme than those in current fission reactors, inevitably leading to new materials science challenges. Radiation-induced damage and corrosion are two key phenomena that must be understood both independently and synergistically, but their interactions are often convoluted. In the light water reactor community, a tremendous amount of work has been done to illuminate irradiation-corrosion effects, and similar efforts are under way for heavy liquid metal and molten salt environments. While certain effects, such as radiolysis and irradiation-assisted stress corrosion cracking, are reasonably well established, the basic science of how irradiation-induced defects in the base material and the corrosion layer influence the corrosion process still presents many unanswered questions. In this review, we summarize the work that has been done to understand these coupled extremes, highlight the complex nature of this problem, and identify key knowledge gaps. Expected final online publication date for the Annual Review of Materials Science, Volume 51 is August 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Sign in / Sign up

Export Citation Format

Share Document