scholarly journals Propagation-invariant vortex Airy beam whose singular point follows its main lobe

Author(s):  
Masato Suzuki ◽  
Keisaku Yamane ◽  
Takashige Omatsu ◽  
Ryuji Morita
Keyword(s):  
2016 ◽  
Author(s):  
Brijesh Kumar Singh ◽  
Roei Remez ◽  
Yuval Tsur ◽  
Ady Arie
Keyword(s):  

2015 ◽  
Vol 40 (20) ◽  
pp. 4703 ◽  
Author(s):  
Brijesh Kumar Singh ◽  
Roei Remez ◽  
Yuval Tsur ◽  
Ady Arie
Keyword(s):  

2017 ◽  
Author(s):  
◽  
Fengfei Wang

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] Airy beam is a self-sustained light beam that propagates in free space along a parabolic trajectory with a constant lateral acceleration. It is a diffraction-free beam with an electric field pattern described by the Airy function containing a main lobe and side lobes. Unlike Gaussian beam that expands after the focus, a practical finite-energy Airy beam keeps its pattern without spreading over a relatively long distance during its propagation. This unique feature makes the Airy beam a great potential of designing optical systems for three-dimensional (3D) imaging. In this work, we develop a new optical 3D imaging methodology using Airy beam. The proposed imaging method has an advantage of increased depth of field (DOF) that is important in biological optical imaging. In the first step, we perform a fundamental research on specific parameters that can affect the properties of the Airy beams. The finite-energy Airy beams are generated by optical Fourier transform using a lens with the incoming plane wave that is truncated by an aperture. Our simulation and experiments showed that by changing the aperture size and the focal length of the lens, the Airy beam pattern is modified. In addition, the DOF, the beam size and the main lobe energy are changed. As a result, Airy beam can be designed for specific imaging applications. Next, we consider the phase in the cubic phase pattern for the phase modulation to generate the Airy beam. This problem is related to the wavelength dependent phase modulation since the phase in cubic phase pattern is designed for a specific wavelength whereas a broadband light source is normally used in optical coherence tomography (OCT). A liquid crystal display (LCD) panel from a projector is used as the SLM. The cubic phase patterns with different gray values displayed on the computer screen provide different phase modulations in the SLM. The experimental and simulated results show that the phase modulation affects the beam shape of the Airy beam. If the maximum phase modulation is larger than 1.7pi, the Airy beam can keep its pattern and the unmodulated Gaussian beam can be neglected. Further, we design a 3D imaging system using the phase-space method based on the Wigner distribution function (WDF). We theoretically build the WDF for the Airy beam and show that the WDF of the Airy beam is shifted in the phase-space as the transverse position of incoming Airy beam changes, and the WDF is tilted as changing the axial position (along the propagation direction). A larger truncating factor can reduce the energy contribution in WDF for the side lobes and modify the shape of the main lobe close to a straight line. In this case, the WDF of the Airy beam is similar to that of the Gaussian beam. However, the DOF of the Airy beam is greatly improved. We perform experimental measurements of WDF using the basic idea of measuring both the space and spatial frequency information in a 4-f system. Our experimental results match the simulation and validate the 3D imaging using Airy beam in the phase space.


2013 ◽  
Vol 710 ◽  
pp. 390-394
Author(s):  
Yuan Zhou ◽  
Feng Lin ◽  
Chao Tan ◽  
Xi Quan Fu

In this paper, by analyzing the main lobe of the Airy beam and its fitting Gaussian beam, we define the Rayleigh range of Airy beam based on the width of FEABs main lobe for scaling the propagation characteristic of the Airy beam. The similar diffraction-free distance of FEAB (here, the width of the main lobe expanding to times) can be scaled by Rayleigh range, but it is from infinite (Pure non-diffraction beam) to one Rayleigh range (the same with Gaussian beam) when decay factor is from 0 to 1. On the contrary, although the FEAB with smaller decay factor () can propagate more Rayleigh ranges keeping diffraction-free, the effective energy in the main lobe is low by studying the power in the bucket (PIB). If more energy needing in the main lobe, the FEAB need bigger decay factor () will become more similar with Gaussian beam which can propagate about one Rayleigh range.


2007 ◽  
Vol 18 (1) ◽  
pp. 65-80
Author(s):  
Adel Nasim Adib ◽  
Nusrat Rajabov
Keyword(s):  

Author(s):  
R. Kadlimatti ◽  
H. Gaddam ◽  
H. Larocque ◽  
E. Karimi ◽  
R.W. Boyd ◽  
...  
Keyword(s):  

Nanophotonics ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Qingqing Cheng ◽  
Juncheng Wang ◽  
Ling Ma ◽  
Zhixiong Shen ◽  
Jing Zhang ◽  
...  

AbstractAiry beams exhibit intriguing properties such as nonspreading, self-bending, and self-healing and have attracted considerable recent interest because of their many potential applications in photonics, such as to beam focusing, light-sheet microscopy, and biomedical imaging. However, previous approaches to generate Airy beams using photonic structures have suffered from severe chromatic problems arising from strong frequency dispersion of the scatterers. Here, we design and fabricate a metasurface composed of silicon posts for the frequency range 0.4–0.8 THz in transmission mode, and we experimentally demonstrate achromatic Airy beams exhibiting autofocusing properties. We further show numerically that a generated achromatic Airy-beam-based metalens exhibits self-healing properties that are immune to scattering by particles and that it also possesses a larger depth of focus than a traditional metalens. Our results pave the way to the realization of flat photonic devices for applications to noninvasive biomedical imaging and light-sheet microscopy, and we provide a numerical demonstration of a device protocol.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dwaipayan Adhya ◽  
George Chennell ◽  
James A. Crowe ◽  
Eva P. Valencia-Alarcón ◽  
James Seyforth ◽  
...  

Abstract Background The inability to observe relevant biological processes in vivo significantly restricts human neurodevelopmental research. Advances in appropriate in vitro model systems, including patient-specific human brain organoids and human cortical spheroids (hCSs), offer a pragmatic solution to this issue. In particular, hCSs are an accessible method for generating homogenous organoids of dorsal telencephalic fate, which recapitulate key aspects of human corticogenesis, including the formation of neural rosettes—in vitro correlates of the neural tube. These neurogenic niches give rise to neural progenitors that subsequently differentiate into neurons. Studies differentiating induced pluripotent stem cells (hiPSCs) in 2D have linked atypical formation of neural rosettes with neurodevelopmental disorders such as autism spectrum conditions. Thus far, however, conventional methods of tissue preparation in this field limit the ability to image these structures in three-dimensions within intact hCS or other 3D preparations. To overcome this limitation, we have sought to optimise a methodological approach to process hCSs to maximise the utility of a novel Airy-beam light sheet microscope (ALSM) to acquire high resolution volumetric images of internal structures within hCS representative of early developmental time points. Results Conventional approaches to imaging hCS by confocal microscopy were limited in their ability to image effectively into intact spheroids. Conversely, volumetric acquisition by ALSM offered superior imaging through intact, non-clarified, in vitro tissues, in both speed and resolution when compared to conventional confocal imaging systems. Furthermore, optimised immunohistochemistry and optical clearing of hCSs afforded improved imaging at depth. This permitted visualization of the morphology of the inner lumen of neural rosettes. Conclusion We present an optimized methodology that takes advantage of an ALSM system that can rapidly image intact 3D brain organoids at high resolution while retaining a large field of view. This imaging modality can be applied to both non-cleared and cleared in vitro human brain spheroids derived from hiPSCs for precise examination of their internal 3D structures. This process represents a rapid, highly efficient method to examine and quantify in 3D the formation of key structures required for the coordination of neurodevelopmental processes in both health and disease states. We posit that this approach would facilitate investigation of human neurodevelopmental processes in vitro.


1994 ◽  
Vol 1 (5) ◽  
pp. 459-467
Author(s):  
T. Buchukuri ◽  
D. Yanakidi

Abstract We investigate the solutions of boundary value problems of linear electroelasticity, having growth as a power function in the neighbourhood of infinity or in the neighbourhood of an isolated singular point. The number of linearly independent solutions of this type is established for homogeneous boundary value problems.


Sign in / Sign up

Export Citation Format

Share Document