beam focusing
Recently Published Documents


TOTAL DOCUMENTS

524
(FIVE YEARS 86)

H-INDEX

28
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Wei Wang ◽  
Chengming Xuan ◽  
Weikai Xu ◽  
Zhe Yang ◽  
Jie Li

Abstract In this paper, a simple mass oscillator metasurface is designed, which can regulate the phase shift of flexural wave covering 0-2π by adjusting the number of mass oscillators on the connecting bar. Based on the forced vibration theory, there is a simple approximately linear relationship between the number and phase shift of mass oscillators, which can more intuitively and accurately predict the phase of different number of mass oscillators, and then realize the metasurface design of mass oscillators with different requirements. Therefore, arbitrary regulation of flexural waves, such as abnormal refraction, beam focusing, and self-acceleration, can be realized by reasonably arranging the number of mass oscillators. The results show that the proposed metasurface can be greatly simplified both in the establishment of phase shift relation and in the fabrication of structure configuration, and will have broad application potential in the engineering field.


Photonics ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 21
Author(s):  
Matvey S. Pochechuev ◽  
Ilya V. Fedotov ◽  
Maxim A. Solotenkov ◽  
Maria S. Andreeva ◽  
Aleksandr A. Lanin ◽  
...  

We demonstrate an adaptive wave-front shaping of optical beams transmitted through fiber bundles as a powerful resource for multisite, high-resolution bioimaging. With the phases of all the beamlets delivered through up to 6000 different fibers within the fiber bundle controlled individually, by means of a high-definition spatial light modulator, the overall beam transmitted through the fiber bundle can be focused into a beam waist with a diameter less than 1 μm within a targeted area in a biotissue, providing a diffraction-limited spatial resolution adequate for single-cell or even subcellular bioimaging. The field intensity in the adaptively-focused continuous-wave laser beam in our fiber-bundle-imaging setting is more than two orders of magnitude higher than the intensity of the speckle background. Once robust beam focusing was achieved with a suitable phase profile across the input face of the fiber bundle, the beam focus can be scanned over a targeted area with no need for a further adaptive search, by applying a physically intuitive, wave-front-tilting phase mask on the field of input beamlets. This method of beam-focus scanning promises imaging speeds compatible with the requirements of in vivo calcium imaging.


2021 ◽  
Vol 8 ◽  
Author(s):  
Wenqiong Chen ◽  
Buxiong Qi ◽  
Jingwei Zhang ◽  
Tiaoming Niu ◽  
Zhonglei Mei

Inspired by the concept of miniaturized and integrated systems, an ultrathin and multifunctional metasurface device is highly desirable in microwave fields. It is an inherent characteristic that the two spin phase states of electromagnetic waves imparted by the geometric phase are always conjugate symmetric, i.e., the geometric phase produces anti-symmetrical phase responses between dual-orthogonal circular polarization states. So it is extremely crucial to break the conjugate constraints and realize the completely independent control of electromagnetic waves with dual-orthogonal circular polarization. Based on this perspective, ultrathin and bifunctional meta-devices operating in reflection mode are proposed to independently manipulate the left-handed and right-handed circularly polarized waves, which are constructed by anisotropic meta-atoms with synthetical geometric and propagation phases. It is worth noting that the component elements only need a single-layer structure with the thickness of 0.07λ0. Several design samples are presented to achieve functionalities of beam focusing, vortex wave generation, and beam deflection, respectively. Experiments are performed and show good consistence with the simulation results, successfully verifying the performance of the designed metasurfaces. The research results in this paper pave the way to design low-profile and bifunctional devices with independent controls of circularly polarized waves, which is expected to expand the working capacity of metasurfaces to realize complex electromagnetic wave manipulation with a new degree of freedom.


2021 ◽  
Author(s):  
Ilya V. Galaktionov ◽  
Alexander Nikitin ◽  
Julia Sheldakova ◽  
Alexis Kudryashov

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3244
Author(s):  
Jiuzhou Zhao ◽  
Zhenjun Li ◽  
Matthew Thomas Cole ◽  
Aiwei Wang ◽  
Xiangdong Guo ◽  
...  

The nanocone-shaped carbon nanotubes field-emitter array (NCNA) is a near-ideal field-emitter array that combines the advantages of geometry and material. In contrast to previous methods of field-emitter array, laser ablation is a low-cost and clean method that does not require any photolithography or wet chemistry. However, nanocone shapes are hard to achieve through laser ablation due to the micrometer-scale focusing spot. Here, we develop an ultraviolet (UV) laser beam patterning technique that is capable of reliably realizing NCNA with a cone-tip radius of ≈300 nm, utilizing optimized beam focusing and unique carbon nanotube–light interaction properties. The patterned array provided smaller turn-on fields (reduced from 2.6 to 1.6 V/μm) in emitters and supported a higher (increased from 10 to 140 mA/cm2) and more stable emission than their unpatterned counterparts. The present technique may be widely applied in the fabrication of high-performance CNTs field-emitter arrays.


Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2805
Author(s):  
Ibrahim Kakouche ◽  
Hamza Abadlia ◽  
Mohammed Nabil El Korso ◽  
Ammar Mesloub ◽  
Abdelmadjid Maali ◽  
...  

Respiration rate monitoring using ultra-wideband (UWB) radar is preferred because it provides contactless measurement without restricting the person’s privacy. This study considers a novel non-contact-based solution using a single-input multiple-output (SIMO) UWB impulse radar. In the proposed system, the collected radar data are converted to several narrow-band signals using the generalized Goertzel algorithm (GGA), which are used as the input of the designed phased arrays for position estimation. In this context, we introduce the incoherent signal subspace methods (ISSM) for the direction of arrivals (DOAs) and distance evaluation. Meanwhile, a beam focusing approach is used to determine each individual and estimate their breathing rate automatically based on a linearly constrained minimum variance (LCMV) beamformer. The experimental results prove that the proposed algorithm can achieve high estimation accuracy in a variety of test environments, with an error of 2%, 5%, and 2% for DOA, distance, and respiration rate, respectively.


2021 ◽  
Vol 2127 (1) ◽  
pp. 012037
Author(s):  
V M Epikhin ◽  
M M Mazur ◽  
A V Ryabinin ◽  
P V Kamaushkin ◽  
L I Mazur

Abstract Acousto-optic modulators/frequency shifters based on TeO2 crystals with single-mode optical fibers supporting and not supporting polarization for collimated and focused light beams at radiation wavelengths of 785, 1064, 1550 nm have been developed, produced and experimentally investigated. The mechanisms of formation and methods of expanding the working band of the modulator are determined. A double-crystal acousto-optic laser emission frequency shifter with an working bandwidth of ≈40 MHz has been created. Single-crystal modulators based on collimated beams with a frequency band of ≈10 MHz are considered. A single-crystal modulator with a focused light beam with a switching time of ≈ 18 ns and an extended reception band of ≈ 40 MHz is investigated. It is shown that a light beam focusing makes it possible to implement a modulator with a minimum switching time of ≈ (2-3) ns. This value is limited by electrical breakdown of the ultrasonic wave transmitter.


Author(s):  
Muhammad Musaddique Ali Rafique

With recent developments in fusion engineering, interest has sparked in development of fusion devices for deterrent. Enormous amount of energy generated by combining two light nuclei could be contained and manipulated at will to trigger and accelerate micro explosions (from shock wave, x-rays or ion beam focusing) which finally result in full scale blast. Materials required to make such device are critical. They must possess high strength, high hardness, ductility, formability, drawability, and anisotropic properties. High entropy alloys (HEA) are new class of materials which nicely fulfils this requirement. Essentially, they are solid solutions of multi principal elements (usually > 5) eliminating the need of base metal as in conventional alloys. This gives them many unique properties which may be tailored at will (heat treatment, cold rolling, precipitation, irradiation). They also exhibit excellent directional properties with formation of distinct bands along certain preferred crystallographic planes even in hexagonal close packed structures. These anisotropic properties are strong function of rolling, working, or forging (swaging) direction and can be utilized to benefit. This study encompasses making outer shell of a typical fusion device selected on the basis of the weight, which is a function of area of pay load bay of carrier aircraft.


2021 ◽  
Vol 87 (5) ◽  
Author(s):  
Xiao-Chuan Ning ◽  
Tian-Yi Liang ◽  
D. Wu ◽  
Zheng-Mao Sheng

The self-focusing condition of a charged particle beam in a resistive plasma has been studied. When plasma heating is weak, the beam focusing is intensified by increasing the beam density or velocity. However, when plasma heating is strong, the beam focusing is only determined by the beam velocity. Especially, in weak heating conditions, the beam trends to be focused into the centre as a whole, and in strong heating conditions, a double-peak structure with a hollow centre is predicted to appear. Furthermore, it is found that the beam radius has a significant effect on focusing distance: a larger the beam radius will result in a longer focusing distance. Simulation results also show that when the beam radius is large enough, filamentation of the beam appears. Our results will serve as a reference for relevant beam–plasma experiments and theoretical analyses, such as heavy ion fusion and ion-beam-driven high energy density physics.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6580
Author(s):  
Woosol Lee ◽  
Suk-il Choi ◽  
Hae-in Kim ◽  
Sunghyun Hwang ◽  
Saeyoung Jeon ◽  
...  

This paper presents a metamaterial (MTM)-integrated high-gain rectenna for RF sensing and energy harvesting applications that operates at 2.45 GHz, an industry, science, medicine (ISM) band. The novel MTM superstrate approach with a three-layered integration method is firstly introduced for rectenna applications. The integrated rectenna consists of three layers, where the first layer is an MTM superstrate consisting of four-by-four MTM unit cell arrays, the second layer a patch antenna, and the third layer a rectifier circuit. By integrating the MTM superstrate on top of the patch antenna, the gain of the antenna is enhanced, owing to its beam focusing capability of the MTM superstrate. This induces the increase of the captured RF power at the rectifier input, resulting in high-output DC power and high entire end-to-end efficiency. A parametric analysis is performed in order to optimize the near-zero property of the MTM unit cell. In addition, the effects of the number of MTM unit cells on the performance of the integrated rectenna are studied. A prototype MTM-integrated rectenna, which is designed on an RO5880 substrate, is fabricated and characterized. The measured gain of the MTM-integrated rectenna is 11.87 dB. It shows a gain improvement of 6.12 dB compared to a counterpart patch antenna without an MTM superstrate and a maximum RF–DC conversion efficiency of 78.9% at an input RF power of 9 dBm. This results in the improvement of the RF–DC efficiency from 39.2% to 78.9% and the increase of the output DC power from 0.7 mW to 6.27 mW (a factor of 8.96 improvements). The demonstrated MTM-integrated rectenna has shown outstanding performance compared to other previously reported work. We emphasize that the demonstrated MTM-integrated rectenna has a low design complexity compared with other work, as the MTM superstrate layer is integrated on top of the simple patch antenna and rectifier circuit. In addition, the number of MTM units can be determined depending on applications. It is highly envisioned that the demonstrated MTM-integrated rectenna will provide new possibilities for practical energy harvesting applications with improved antenna gain and efficiency in various IoT environments.


Sign in / Sign up

Export Citation Format

Share Document