A study of multi-soliton solutions, breather, lumps, and their interactions for Kadomtsev-Petviashvili equation with variable time coefficient using Hirota method

2021 ◽  
Author(s):  
Sachin Kumar ◽  
Brij Mohan
Open Physics ◽  
2011 ◽  
Vol 9 (1) ◽  
Author(s):  
Abdul-Majid Wazwaz

AbstractIn this work, two new completely integrable extensions of the Kadomtsev-Petviashvili (eKP) equation are developed. Multiple soliton solutions and multiple singular soliton solutions are derived to demonstrate the compatibility of the extensions of the KP equation.


2018 ◽  
Vol 32 (06) ◽  
pp. 1850082
Author(s):  
Ding Guo ◽  
Shou-Fu Tian ◽  
Li Zou ◽  
Tian-Tian Zhang

In this paper, we consider the (3[Formula: see text]+[Formula: see text]1)-dimensional modified Korteweg–de Vries–Kadomtsev–Petviashvili (mKdV-KP) equation, which can be used to describe the nonlinear waves in plasma physics and fluid dynamics. By using solitary wave ansatz in the form of sech[Formula: see text] function and a direct integrating way, we construct the exact bright soliton solutions and the travelling wave solutions of the equation, respectively. Moreover, we obtain its power series solutions with the convergence analysis. It is hoped that our results can provide the richer dynamical behavior of the KdV-type and KP-type equations.


2020 ◽  
Vol 34 (06) ◽  
pp. 2050076 ◽  
Author(s):  
Han-Dong Guo ◽  
Tie-Cheng Xia ◽  
Wen-Xiu Ma

In this paper, an extended (3[Formula: see text]+[Formula: see text]1)-dimensional Kadomtsev–Petviashvili (KP) equation is studied via the Hirota bilinear derivative method. Soliton, breather, lump and rogue waves, which are four types of localized waves, are obtained. N-soliton solution is derived by employing bilinear method. Then, line or general breathers, two-order line or general breathers, interaction solutions between soliton and line or general breathers are constructed by complex conjugate approach. These breathers own different dynamic behaviors in different planes. Taking the long wave limit method on the multi-soliton solutions under special parameter constraints, lumps, two- and three-lump and interaction solutions between dark soliton and dark lump are constructed, respectively. Finally, dark rogue waves, dark two-order rogue waves and related interaction solutions between dark soliton and dark rogue waves or dark lump are also demonstrated. Moreover, dynamical characteristics of these localized waves and interaction solutions are further vividly demonstrated through lots of three-dimensional graphs.


2020 ◽  
Vol 7 ◽  
Author(s):  
Aliyu Isa Aliyu ◽  
Yongjin Li ◽  
Liu Qi ◽  
Mustafa Inc ◽  
Dumitru Baleanu ◽  
...  

Author(s):  
Sachin Kumar ◽  
Monika Niwas ◽  
Ihsanullah Hamid

The prime objective of this paper is to obtain the exact soliton solutions by applying the two mathematical techniques, namely, Lie symmetry analysis and generalized exponential rational function (GERF) method to the (2+1)-dimensional generalized Camassa–Holm–Kadomtsev–Petviashvili (g-CHKP) equation. First, we obtain Lie infinitesimals, possible vector fields, and commutative product of vectors for the g-CHKP equation. By the means of symmetry reductions, the g-CHKP equation reduced to various nonlinear ODEs. Subsequently, we implement the GERF method to the reduced ODEs with the help of computerized symbolic computation in Mathematica. Some abundant exact soliton solutions are obtained in the shapes of different dynamical structures of multiple-solitons like one-soliton, two-soliton, three-soliton, four-soliton, bell-shaped solitons, lump-type soliton, kink-type soliton, periodic solitary wave solutions, trigonometric function, hyperbolic trigonometric function, exponential function, and rational function solutions. Consequently, the dynamical structures of attained exact analytical solutions are discussed through 3D-plots via numerical simulation. A comparison with other results is also presented.


Sign in / Sign up

Export Citation Format

Share Document