Amplitude resonance response and feedback control of cantileverbeams with tip-mass under aerodynamic load

2021 ◽  
Author(s):  
Francis Rolphe Zemtchou ◽  
Jeanne Sandrine Mabekou Takam ◽  
Pernel Nganyo Nguenang ◽  
Pierre Kisito Talla

Abstract The dynamic of a cantilever beam with tip mass is studied under an aerodynamic loading. The effects of coupling is investigated by tacking into account the fluid flow. Using the multiple time scale method, the approximative solutions are found and the study of their stability is made by the Routh-Hurwitz stability criterion. The influence of parameters on the system is studied at the harmonic and subharmonic resonances. The results show that, the effects of tip mass can be neglected in harmonic resonance case ,while they are more important in subharmonic resonance cases. The results equally demonstrate that an increase of the stable state fluid velocity reduces the amplitude of vibrations. In addition, the hysteresis phenomenon studies show that it is principally induced by nonlinearity coefficients. Finally, time-delay feedback control is applied and the effects of controlling are observed on amplitude response curve at the harmonic resonance, from where we note that optimized choice of control parameters can be useful in controlling vibrations.

Author(s):  
Huatao Chen ◽  
Kun Zhao ◽  
Juan L.G. Guirao ◽  
Dengqing Cao

AbstractFor the entry guidance problem of hypersonic gliding vehicles (HGVs), an analytical predictor–corrector guidance method based on feedback control of bank angle is proposed. First, the relative functions between the velocity, bank angle and range-to-go are deduced, and then, the analytical relation is introduced into the predictor–corrector algorithm, which is used to replace the traditional method to predict the range-to-go via numerical integration. To eliminate the phugoid trajectory oscillation, a method for adding the aerodynamic load feedback into the control loop of the bank angle is proposed. According to the quasi-equilibrium gliding condition, the function of the quasi-equilibrium glide load along with the velocity variation is derived. For each guidance period, the deviation between the real-time load and the quasi-equilibrium gliding load is revised to obtain a smooth reentry trajectory. The simulation results indicate that the guidance algorithm can adapt to the mission requirements of different downranges, and it also has the ability to guide the vehicle to carry out a large range of lateral maneuvers. The feedback control law of the bank angle effectively eliminates the phugoid trajectory oscillation and guides the vehicle to complete a smooth reentry flight. The Monte Carlo test indicated that the guidance precision and robustness are good.


2021 ◽  
pp. 014459872110204
Author(s):  
Wan Cheng ◽  
Chunhua Lu ◽  
Guanxiong Feng ◽  
Bo Xiao

Multistaged temporary plugging fracturing in horizontal wells is an emerging technology to promote uniform fracture propagation in tight reservoirs by injecting ball sealers to plug higher-flux perforations. The seating mechanism and transportation of ball sealers remain poorly understood. In this paper, the sensitivities of the ball sealer density, casing injection rate and perforation angle to the seating behaviors are studied. In a vertical wellbore section, a ball sealer accelerates very fast at the beginning of the dropping and reaches a stable state within a few seconds. The terminal velocity of a non-buoyant ball is greater than the fluid velocity, while the terminal velocity of a buoyant ball is less than the fluid velocity. In the horizontal wellbore section, the terminal velocity of a non-buoyant or buoyant ball is less than the fracturing fluid flowing velocity. The ball sealer density is a more critical parameter than the casing injection rate when a ball sealer diverts to a perforation hole. The casing injection rate is a more critical parameter than the ball sealer density when a ball sealer seats on a perforation hole. A buoyant ball sealer associated with a high injection rate of fracturing fluid is highly recommended to improve the seating efficiency.


Author(s):  
Kaiwei Wu ◽  
Chuanbo Ren ◽  
Yuanchang Chen

Time-delay feedback control can effectively broaden the damping frequency band and improve the damping efficiency. However, the existing time-delay feedback control strategy has no obvious effect on multi-frequency random excitation vibration reduction control. That is, when the frequency of external excitation is more complicated, there is no better way to obtain the best time-delay feedback control parameters. To overcome this issue, this paper is the first work of proposing an optimal calculation method that introduces stochastic excitation into the process of solving the delay feedback control parameters. It is a time-delay control parameter with a better damping effect for random excitation. In this paper, a 2 DOF one-quarter vehicle suspension model with time-delay is studied. First, the stability interval of time-delay feedback control parameters is solved by using the Lyapunov stability theory. Second, the optimal control parameters of the time-delay feedback control under random excitation are solved by particle swarm optimization (PSO). Finally, the simulation models of a one-quarter vehicle suspension simulation model are established. Random excitation and harmonic excitation are used as inputs. The response of the vehicle body under the frequency domain damping control method and the proposed control method is compared and simulated. To make the control precision higher and the solution speed faster, this paper simulates the model by using the precise integration method of transient history. The simulation results show that the acceleration of the vehicle body in the proposed control method is 13.05% less than the passive vibration absorber under random excitation. Compared with the time-delay feedback control optimized by frequency response function, the damping effect is 12.99%. The results show that the vibration displacement, vibration velocity, and vibration acceleration of the vehicle body are better than the frequency domain function optimization method, whether it is harmonic excitation or random excitation. The ride comfort of the vehicle is improved obviously. It provides a valuable tool for time-delay vibration reduction control under random excitation.


Author(s):  
Yong-gwon Lee ◽  
Yeong-jae Kim ◽  
Seung-ho Kim ◽  
Seung-hoon Lee ◽  
Oh-min Kwon

Sign in / Sign up

Export Citation Format

Share Document