scholarly journals Electroweak phase transition and entropy release in the early universe

2018 ◽  
Vol 2018 (01) ◽  
pp. 032-032 ◽  
Author(s):  
A. Chaudhuri ◽  
A. Dolgov
2019 ◽  
Vol 43 (10) ◽  
pp. 105101 ◽  
Author(s):  
Taishi Katsuragawa ◽  
Shinya Matsuzaki ◽  
Eibun Senaha

2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Francesco D’Eramo ◽  
Fazlollah Hajkarim ◽  
Seokhoon Yun

Abstract Thermal axion production in the early universe goes through several mass thresholds, and the resulting rate may change dramatically across them. Focusing on the KSVZ and DFSZ frameworks for the invisible QCD axion, we perform a systematic analysis of thermal production across thresholds and provide smooth results for the rate. The QCD phase transition is an obstacle for both classes of models. For the hadronic KSVZ axion, we also deal with production at temperatures around the mass of the heavy-colored fermion charged under the Peccei-Quinn symmetry. Within the DFSZ framework, standard model fermions are charged under this symmetry, and additional thresholds are the heavy Higgs bosons masses and the electroweak phase transition. We investigate the cosmological implications with a specific focus on axion dark radiation quantified by an effective number of neutrino species and explore the discovery reach of future CMB-S4 surveys.


Author(s):  
Arnab Chaudhuri ◽  
Maxim Yu. Khlopov

When the vacuum like energy of the Higgs potential within the standard model undergoes electroweak phase transition, an influx of entropy into the primordial plasma can lead to a significant dilution of frozen out dark matter density that was already present before the onset of the phase transition. The same effect can take place if the early universe was dominated by primordial black holes of small mass, evaporating before the period of Big Bang Nucleosynthesis. In this paper, we calculate the dilution factor for the above-mentioned scenarios.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Aleksandr Azatov ◽  
Miguel Vanvlasselaer ◽  
Wen Yin

Abstract In this paper we present a novel mechanism for producing the observed Dark Matter (DM) relic abundance during the First Order Phase Transition (FOPT) in the early universe. We show that the bubble expansion with ultra-relativistic velocities can lead to the abundance of DM particles with masses much larger than the scale of the transition. We study this non-thermal production mechanism in the context of a generic phase transition and the electroweak phase transition. The application of the mechanism to the Higgs portal DM as well as the signal in the Stochastic Gravitational Background are discussed.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Andreas Ekstedt ◽  
Johan Löfgren

Abstract The electroweak phase transition broke the electroweak symmetry. Perturbative methods used to calculate observables related to this phase transition suffer from severe problems such as gauge dependence, infrared divergences, and a breakdown of perturbation theory. In this paper we develop robust perturbative tools for dealing with phase transitions. We argue that gauge and infrared problems are absent in a consistent power-counting. We calculate the finite temperature effective potential to two loops for general gauge-fixing parameters in a generic model. We demonstrate gauge invariance, and perform numerical calculations for the Standard Model in Fermi gauge.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Sebastian Baum ◽  
Marcela Carena ◽  
Nausheen R. Shah ◽  
Carlos E. M. Wagner ◽  
Yikun Wang

Abstract Electroweak baryogenesis is an attractive mechanism to generate the baryon asymmetry of the Universe via a strong first order electroweak phase transition. We compare the phase transition patterns suggested by the vacuum structure at the critical temperatures, at which local minima are degenerate, with those obtained from computing the probability for nucleation via tunneling through the barrier separating local minima. Heuristically, nucleation becomes difficult if the barrier between the local minima is too high, or if the distance (in field space) between the minima is too large. As an example of a model exhibiting such behavior, we study the Next-to-Minimal Supersymmetric Standard Model, whose scalar sector contains two SU(2) doublets and one gauge singlet. We find that the calculation of the nucleation probabilities prefers different regions of parameter space for a strong first order electroweak phase transition than the calculation based solely on the critical temperatures. Our results demonstrate that analyzing only the vacuum structure via the critical temperatures can provide a misleading picture of the phase transition patterns, and, in turn, of the parameter space suitable for electroweak baryogenesis.


2012 ◽  
Vol 717 (4-5) ◽  
pp. 396-402 ◽  
Author(s):  
Grzegorz Gil ◽  
Piotr Chankowski ◽  
Maria Krawczyk

Sign in / Sign up

Export Citation Format

Share Document