gravitational background
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 5)

H-INDEX

11
(FIVE YEARS 0)

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Rome Samanta ◽  
Satyabrata Datta

Abstract In seesaw mechanism, if right handed (RH) neutrino masses are generated dynamically by a gauged U(1) symmetry breaking, a stochastic gravitational wave background (SGWB) sourced by a cosmic string network could be a potential probe of leptogenesis. We show that the leptogenesis mechanism that facilitates the dominant production of lepton asymmetry via the quantum effects of right-handed neutrinos in gravitational background, can be probed by GW detectors as well as next-generation neutrinoless double beta decay (0νββ) experiments in a complementary way. We infer that for a successful leptogenesis, an exclusion limit on f − ΩGWh2 plane would correspond to an exclusion on the |mββ| − m1 plane as well. We consider a normal light neutrino mass ordering and discuss how recent NANOGrav pulsar timing data (if interpreted as GW signal) e.g., at 95% CL, would correlate with the potential discovery or null signal in 0νββ decay experiments.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Aleksandr Azatov ◽  
Miguel Vanvlasselaer ◽  
Wen Yin

Abstract In this paper we present a novel mechanism for producing the observed Dark Matter (DM) relic abundance during the First Order Phase Transition (FOPT) in the early universe. We show that the bubble expansion with ultra-relativistic velocities can lead to the abundance of DM particles with masses much larger than the scale of the transition. We study this non-thermal production mechanism in the context of a generic phase transition and the electroweak phase transition. The application of the mechanism to the Higgs portal DM as well as the signal in the Stochastic Gravitational Background are discussed.


Universe ◽  
2020 ◽  
Vol 6 (10) ◽  
pp. 160
Author(s):  
Banibrata Mukhopadhyay ◽  
Soumya Kanti Ganguly

We show Zeeman-like splitting in the energy of spinors propagating in a background gravitational field, analogous to the spinors in an electromagnetic field, otherwise termed the Gravitational Zeeman Effect. These spinors are also found to acquire a geometric phase, in a similar way as they do in the presence of magnetic fields. However, in a gravitational background, the Aharonov-Bohm type effect, in addition to Berry-like phase, arises. Based on this result, we investigate geometric phases acquired by neutrinos propagating in a strong gravitational field. We also explore entanglement of neutrino states due to gravity, which could induce neutrino-antineutrino oscillation in the first place. We show that entangled states also acquire geometric phases which are determined by the relative strength between gravitational field and neutrino masses.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Xinyi Chen-Lin ◽  
Amit Dekel

Abstract A new supersymmetric D7-brane embedding in the Pilch-Warner gravitational background is found exactly, by solving the supersymmetric condition. In the dual holographic picture, our setting corresponds to adding a quenched fundamental matter sector to $$ \mathcal{N} $$ N = 2∗ super Yang-Mills theory, at zero temperature. We show that previous results in the same setting are missing the Wess-Zumino term in the D-brane action, and how our results complete the picture.


2018 ◽  
Vol 399 ◽  
pp. 1-25 ◽  
Author(s):  
Yago Ferreiros ◽  
Eduardo Fradkin

2017 ◽  
Vol 26 (12) ◽  
pp. 1742001 ◽  
Author(s):  
Ivan Agullo ◽  
Adrian del Rio ◽  
Jose Navarro-Salas

Vacuum fluctuations of quantum fields are altered in the presence of a strong gravitational background, with important physical consequences. We argue that a nontrivial spacetime geometry can act as an optically active medium for quantum electromagnetic radiation, in such a way that the state of polarization of radiation changes in time, even in the absence of electromagnetic sources. This is a quantum effect, and is a consequence of an anomaly related to the classical invariance under electric-magnetic duality rotations in Maxwell theory.


2017 ◽  
Vol 26 (4) ◽  
pp. 040401
Author(s):  
Wei-Huang Wu ◽  
Yuan Tian ◽  
Chao Xue ◽  
Jie Luo ◽  
Cheng-Gang Shao

2017 ◽  
Vol 26 (08) ◽  
pp. 1750082 ◽  
Author(s):  
Pankaj Chaturvedi ◽  
Naveen K. Singh ◽  
Dharm Veer Singh

We study the modified Reissner–Nordstrom (RN) metric in the unimodular gravity. So far the spherical symmetric Einstein field equation in unimodular gravity has been studied in the absence of any source. We consider static electric and magnetic charge as source. We solve for Maxwell equations in unimodular gravitational background. We show that in unimodular gravity, the electromagnetic field strength tensor is modified. We also show that the solution in unimodular gravity differs from the usual RN metric in Einstein gravity with some corrections. We further study the thermodynamical properties of the RN black hole solution in this theory.


Sign in / Sign up

Export Citation Format

Share Document