scholarly journals Nucleation is more than critical: A case study of the electroweak phase transition in the NMSSM

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Sebastian Baum ◽  
Marcela Carena ◽  
Nausheen R. Shah ◽  
Carlos E. M. Wagner ◽  
Yikun Wang

Abstract Electroweak baryogenesis is an attractive mechanism to generate the baryon asymmetry of the Universe via a strong first order electroweak phase transition. We compare the phase transition patterns suggested by the vacuum structure at the critical temperatures, at which local minima are degenerate, with those obtained from computing the probability for nucleation via tunneling through the barrier separating local minima. Heuristically, nucleation becomes difficult if the barrier between the local minima is too high, or if the distance (in field space) between the minima is too large. As an example of a model exhibiting such behavior, we study the Next-to-Minimal Supersymmetric Standard Model, whose scalar sector contains two SU(2) doublets and one gauge singlet. We find that the calculation of the nucleation probabilities prefers different regions of parameter space for a strong first order electroweak phase transition than the calculation based solely on the critical temperatures. Our results demonstrate that analyzing only the vacuum structure via the critical temperatures can provide a misleading picture of the phase transition patterns, and, in turn, of the parameter space suitable for electroweak baryogenesis.

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Ke-Pan Xie

Abstract An electroweak baryogenesis (EWBG) mechanism mediated by τ lepton transport is proposed. We extend the Standard Model with a real singlet scalar S to trigger the strong first-order electroweak phase transition (SFOEWPT), and with a set of leptophilic dimension-5 operators to provide sufficient CP violating source. We demonstrate this model is able to generate the observed baryon asymmetry of the universe. This scenario is experimentally testable via either the SFOEWPT gravitational wave signals at the next-generation space-based detectors, or the pp → h* → SS → 4τ process (where h* is an off-shell Higgs) at the hadron colliders. A detailed collider simulation shows that a considerable fraction of parameter space can be probed at the HL-LHC, while almost the whole parameter space allowed by EWBG can be reached by the 27 TeV HE-LHC.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Ke-Pan Xie ◽  
Ligong Bian ◽  
Yongcheng Wu

Abstract We study electroweak baryogenesis in the SO(6)/SO(5) composite Higgs model with the third generation quarks being embedded in the 20′ representation of SO(6). The scalar sector contains one Higgs doublet and one real singlet, and their potential is given by the Coleman-Weinberg potential evaluated from the form factors of the lightest vector and fermion resonances. We show that the resonance masses at $$ \mathcal{O}\left(1\sim 10\kern0.5em \mathrm{TeV}\right) $$ O 1 ∼ 10 TeV can generate a potential that triggers the strong first-order electroweak phase transition (SFOEWPT). The CP violating phase arising from the dimension-6 operator in the top sector is sufficient to yield the observed baryon asymmetry of the universe. The SFOEWPT parameter space is detectable at the future space-based detectors.


1994 ◽  
Vol 05 (02) ◽  
pp. 379-381
Author(s):  
K. FARAKOS ◽  
K. KAJANTIE ◽  
K. RUMMUKAINEN ◽  
M. SHAPOSHNIKOV

According to the electroweak baryogenesis scenario the matter-antimatter asymmetry of the Universe was created shortly after the Big Bang, during the electroweak phase transition. This process depends strongly on the detailed nature of the electroweak phase transition. For realistic Higgs particle masses, the standard perturbative analysis indicates that the transition is at most only weakly first order. We have studied the transition with non-perturbative lattice Monte Carlo simulations. We found large non-perturbative effects; in particular, the phase transition is a strongly first order one, at least up to Higgs mass of about 85 GeV. This makes electroweak baryogenesis a viable scenario with a Higgs mass not exceeding 85 GeV.


2017 ◽  
Vol 32 (08) ◽  
pp. 1750049 ◽  
Author(s):  
Andrea Addazi

We discuss the possibility to indirectly test first-order phase transitions of hidden sectors. We study the interesting example of a Dark Standard Model (D-SM) with a deformed parameter space in the Higgs potential. A dark electroweak phase transition can be limited from next future experiments like eLISA and DECIGO.


2018 ◽  
Vol 168 ◽  
pp. 05001 ◽  
Author(s):  
Toshinori Matsui

Among various scenarios of baryon asymmetry of the Universe, electroweak baryogenesis is directly connected with physics of the Higgs sector. We discuss spectra of gravitational waves which are originated by the strongly first order phase transition at the electroweak symmetry breaking, which is required for a successful scenario of electroweak baryogenesis. In the Z3 symmetric singlet scalar model, the significant gravitational waves are caused by the multi-step phase transition. We show that the model can be tested by measuring the characteristic spectra of the gravitational waves at future interferometers such as LISA and DECIGO.


2017 ◽  
Vol 2017 ◽  
pp. 1-10
Author(s):  
Mina Saeedhosseini ◽  
Ali Tofighi

We consider an extension of the Standard Model (SM) with additional gauge singlets which exhibits a strong first-order phase transition. Due to this first-order phase transition in the early universe gravitational waves are produced. We estimate the contributions such as the sound wave, the bubble wall collision, and the plasma turbulence to the stochastic gravitational wave background, and we find that the strength at the peak frequency is large enough to be detected at future gravitational interferometers such as eLISA. Deviations in the various Higgs boson self-couplings are also evaluated.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Wei Liu ◽  
Ke-Pan Xie

Abstract We study the complementarity of the proposed multi-TeV muon colliders and the near-future gravitational wave (GW) detectors to the first order electroweak phase transition (FOEWPT), taking the real scalar extended Standard Model as the representative model. A detailed collider simulation shows the FOEWPT parameter space can be greatly probed via the vector boson fusion production of the singlet, and its subsequent decay to the di-Higgs or di-boson channels. Especially, almost all the parameter space yielding detectable GW signals can be probed by the muon colliders. Therefore, if we could detect stochastic GWs in the future, a muon collider could provide a hopeful crosscheck to identify their origin. On the other hand, there is considerable parameter space that escapes GW detections but is within the reach of the muon colliders. The precision measurements of Higgs couplings could also probe the FOEWPT parameter space efficiently.


Physics ◽  
2021 ◽  
Vol 3 (2) ◽  
pp. 275-289
Author(s):  
Arnab Chaudhuri ◽  
Maxim Yu. Khlopov

We revisit the possibility of first order electroweak phase transition (EWPT) in one of the simplest extensions of the Standard Model scalar sector, namely the two-Higgs-doublet model (2HDM). We take into account the ensuing constraints from the electroweak precision tests, Higgs signal strengths and the recent LHC bounds from direct scalar searches. By studying the vacuum transition in 2HDM, we discuss in detail the entropy released in the first order EWPT in various parameter planes of a 2HDM.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Aleksandr Azatov ◽  
Miguel Vanvlasselaer ◽  
Wen Yin

Abstract In this paper we present a novel mechanism for producing the observed Dark Matter (DM) relic abundance during the First Order Phase Transition (FOPT) in the early universe. We show that the bubble expansion with ultra-relativistic velocities can lead to the abundance of DM particles with masses much larger than the scale of the transition. We study this non-thermal production mechanism in the context of a generic phase transition and the electroweak phase transition. The application of the mechanism to the Higgs portal DM as well as the signal in the Stochastic Gravitational Background are discussed.


Sign in / Sign up

Export Citation Format

Share Document