scholarly journals The gravitational field of a star in quadratic gravity

2021 ◽  
Vol 2021 (08) ◽  
pp. 050
Author(s):  
A. Bonanno ◽  
S. Silveravalle
Author(s):  
Victor Berezin ◽  
Vyacheslav Dokuchaev ◽  
Yury Eroshenko ◽  
Alexey Smirnov

In the present paper we investigate the conservative conditions in Quadratic Gravity. It is shown explicitly that the Bianchi identities lead to the conservative condition of the left-hand-side of the (gravitational) field equation. Therefore, the total energy-momentum tensor is conservative in the bulk (like in General Relativity). However, in Quadratic Gravity it is possible to have singular hupersurfaces separating the bulk regions with different behavior of the matter energy-momentum tensor or different vacua. They require special consideration. We derived the conservative conditions on such singular hypersurfaces and demonstrated the very possibility of the matter creation. In the remaining part of the paper we considered some applications illustrating the obtained results.


1966 ◽  
Vol 25 ◽  
pp. 46-48 ◽  
Author(s):  
M. Lecar

“Dynamical mixing”, i.e. relaxation of a stellar phase space distribution through interaction with the mean gravitational field, is numerically investigated for a one-dimensional self-gravitating stellar gas. Qualitative results are presented in the form of a motion picture of the flow of phase points (representing homogeneous slabs of stars) in two-dimensional phase space.


1984 ◽  
Vol 75 ◽  
pp. 361-362
Author(s):  
André Brahic

AbstractThe dynamical evolution of planetary discs in the gravitational field of an oblate planet and a satellite is numerically simulated.


2000 ◽  
Vol 10 (PR5) ◽  
pp. Pr5-109-Pr5-112
Author(s):  
J.-F. Dufrêche ◽  
J.-P. Simonin ◽  
P. Turq

1971 ◽  
Vol 105 (12) ◽  
pp. 780-781 ◽  
Author(s):  
Ya.B. Zel'dovich ◽  
Lev P. Pitaevskii ◽  
Valentin S. Popov ◽  
Aleksei A. Starobinskii

2018 ◽  
Vol 15 (1) ◽  
pp. 12-22
Author(s):  
V. M. Artyushenko ◽  
D. Y. Vinogradov

The article reviewed and analyzed the class of geometrically stable orbits (GUO). The conditions of stability in the model of the geopotential, taking into account the zonal harmonics. The sequence of calculation of the state vector of GUO in the osculating value of the argument of the latitude with the famous Ascoli-royski longitude of the ascending node, inclination and semimajor axis. The simulation is obtained the altitude profiles of SEE regarding the all-earth ellipsoid model of the gravitational field of the Earth given 7 and 32 zonal harmonics.


Sign in / Sign up

Export Citation Format

Share Document