scholarly journals Constraints on the properties of warm dark matter using the satellite galaxies of the Milky Way

2021 ◽  
Vol 2021 (08) ◽  
pp. 062 ◽  
Author(s):  
Oliver Newton ◽  
Matteo Leo ◽  
Marius Cautun ◽  
Adrian Jenkins ◽  
Carlos S. Frenk ◽  
...  
2020 ◽  
Vol 500 (3) ◽  
pp. 3776-3801
Author(s):  
Wenting Wang ◽  
Masahiro Takada ◽  
Xiangchong Li ◽  
Scott G Carlsten ◽  
Ting-Wen Lan ◽  
...  

ABSTRACT We conduct a comprehensive and statistical study of the luminosity functions (LFs) for satellite galaxies, by counting photometric galaxies from HSC, DECaLS, and SDSS around isolated central galaxies (ICGs) and paired galaxies from the SDSS/DR7 spectroscopic sample. Results of different surveys show very good agreement. The satellite LFs can be measured down to MV ∼ −10, and for central primary galaxies as small as 8.5 < log10M*/M⊙ < 9.2 and 9.2 < log10M*/M⊙ < 9.9, which implies there are on average 3–8 satellites with MV < −10 around LMC-mass ICGs. The bright end cutoff of satellite LFs and the satellite abundance are both sensitive to the magnitude gap between the primary and its companions, indicating galaxy systems with larger magnitude gaps are on average hosted by less massive dark matter haloes. By selecting primaries with stellar mass similar to our Milky Way (MW), we discovered that (i) the averaged satellite LFs of ICGs with different magnitude gaps to their companions and of galaxy pairs with different colour or colour combinations all show steeper slopes than the MW satellite LF; (ii) there are on average more satellites with −15 < MV < −10 than those in our MW; (iii) there are on average 1.5 to 2.5 satellites with MV < −16 around ICGs, consistent with our MW; (iv) even after accounting for the large scatter predicted by numerical simulations, the MW satellite LF is uncommon at MV > −12. Hence, the MW and its satellite system are statistically atypical of our sample of MW-mass systems. In consequence, our MW is not a good representative of other MW-mass galaxies. Strong cosmological implications based on only MW satellites await additional discoveries of fainter satellites in extra-galactic systems. Interestingly, the MW satellite LF is typical among other MW-mass systems within 40 Mpc in the local Universe, perhaps implying the Local Volume is an underdense region.


2016 ◽  
Vol 461 (3) ◽  
pp. 2282-2287 ◽  
Author(s):  
J. A. Schewtschenko ◽  
C. M. Baugh ◽  
R. J. Wilkinson ◽  
C. Bœhm ◽  
S. Pascoli ◽  
...  

2021 ◽  
Vol 917 (1) ◽  
pp. 7
Author(s):  
Ethan O. Nadler ◽  
Simon Birrer ◽  
Daniel Gilman ◽  
Risa H. Wechsler ◽  
Xiaolong Du ◽  
...  

2019 ◽  
Vol 487 (3) ◽  
pp. 4409-4423 ◽  
Author(s):  
Tyler Kelley ◽  
James S Bullock ◽  
Shea Garrison-Kimmel ◽  
Michael Boylan-Kolchin ◽  
Marcel S Pawlowski ◽  
...  

ABSTRACT We introduce an extension of the ELVIS project to account for the effects of the Milky Way galaxy on its subhalo population. Our simulation suite, Phat ELVIS, consists of 12 high-resolution cosmological dark matter-only (DMO) zoom simulations of Milky Way-size ΛCDM haloes [Mv = (0.7−2) × 1012 M⊙] along with 12 re-runs with embedded galaxy potentials grown to match the observed Milky Way disc and bulge today. The central galaxy potential destroys subhalos on orbits with small pericentres in every halo, regardless of the ratio of galaxy mass to halo mass. This has several important implications. (1) Most of the Disc runs have no subhaloes larger than Vmax = 4.5 km s−1 within 20 kpc and a significant lack of substructure going back ∼8 Gyr, suggesting that local stream-heating signals from dark substructure will be rare. (2) The pericentre distributions of Milky Way satellites derived from Gaia data are remarkably similar to the pericentre distributions of subhaloes in the Disc runs, while the DMO runs drastically overpredict galaxies with pericentres smaller than 20 kpc. (3) The enhanced destruction produces a tension opposite to that of the classic ‘missing satellites’ problem: in order to account for ultra-faint galaxies known within 30 kpc of the Galaxy, we must populate haloes with Vpeak ≃ 7 km s−1 (M ≃ 3 × 107 M⊙ at infall), well below the atomic cooling limit of $V_\mathrm{peak}\simeq 16 \,{\rm km} \, {\rm s}^{-1}$ (M ≃ 5 × 108M⊙ at infall). (4) If such tiny haloes do host ultra-faint dwarfs, this implies the existence of ∼1000 satellite galaxies within 300 kpc of the Milky Way.


2020 ◽  
Vol 500 (4) ◽  
pp. 5589-5602
Author(s):  
Ashadul Halder ◽  
Shibaji Banerjee ◽  
Madhurima Pandey ◽  
Debasish Majumdar

ABSTRACT The mass-to-luminosity ratio of the dwarf satellite galaxies in the Milky Way suggests that these dwarf galaxies may contain substantial dark matter. The dark matter at the dense region such as within or at the vicinity of the centres of these dwarf galaxies may undergo the process of self-annihilation and produce γ-rays as the end product. The satellite borne γ-ray telescope such as Fermi-LAT reported the detection of γ-rays from around 45 Dwarf Spheroidals (dSphs) of Milky Way. In this work, we consider particle dark matter models described in the literature and after studying their phenomenologies, we calculate the γ-ray fluxes from the self-annihilation of the dark matter within the framework of these models in case of each of these 45 dSphs. We then compare the computed results with the observational upper bounds for γ-ray flux reported by Fermi-LAT and Dark Energy Survey for each of the 45 dSphs. The fluxes are calculated by adopting different dark matter density profiles. We then extend similar analysis for the observational upper bounds given by Fermi-LAT for the continuum γ-ray fluxes originating from extragalactic sources.


2012 ◽  
Vol 29 (4) ◽  
pp. 383-394 ◽  
Author(s):  
Helmut Jerjen

AbstractThe Sloan Digital Sky Survey has been immensely successful in detecting new Milky Way satellite galaxies over the past seven years. It was instrumental in finding examples of the least luminous galaxies we know in the Universe, uncovering apparent inconsistencies between cold dark matter theory and dwarf galaxy properties, providing first evidence for a possible lower mass limit for dark matter halos in visible galaxies, and reopening the discussion about the building block scenario for the Milky Way halo. Nonetheless, these results are still drawn only from a relatively small number of galaxies distributed over an area covering about 29% of the sky, which leaves us currently with more questions than answers. The study of these extreme stellar systems is a multi-parameter problem: ages, metallicities, star formation histories, dark matter contents, population fractions and spatial distributions must be determined. Progress in the field is discussed and attention drawn to some of the limitations that currently hamper our ability to fully understand the phenomenon of the ‘ultra-faint dwarf galaxy’. In this context, the Stromlo Milky Way Satellite Survey represents a new initiative to systematically search and scrutinize optically elusive Milky Way satellite galaxies in the Southern hemisphere. In doing so, the program aims at investigating some of the challenging questions in stellar evolution, galaxy formation and near-field cosmology.


2017 ◽  
Vol 13 (S334) ◽  
pp. 349-350
Author(s):  
Go Ogiya

AbstractThe Milky Way (MW) is interacting with its satellite galaxies and the tidal remnants of satellite galaxies have been observed especially in the MW halo. Understanding the spatial and velocity distributions of stars stripped from satellite galaxies will be of particular importance when interpreting the data from upcoming observations, such as Gaia, Subaru-HSC and PFS. We study tidal stripping events of satellite galaxies with various internal structures using high resolution N-body simulations. The dynamics of satellite galaxies is dominated by dark matter halos, but their density structure is still uncertain. The simulations reveal satellite galaxies with more tightly bound dark matter halos are more robust against the tidal force of the MW and have longer lifetimes than loosely bound ones (Ogiya et al., in prep.). Density scratches on the MW caused by the gravitational force of satellite galaxies and the observability are also discussed (Ogiya & Burkert 2016).


2018 ◽  
Vol 14 (S344) ◽  
pp. 498-501
Author(s):  
Takashi Okamoto

AbstractSelf-interacting dark matter (SIDM) can create sufficiently large cores in dark matter haloes of dwarf galaxies if the self-interaction cross-section is sufficiently large on scales of dwarf galaxies. Such a large cross-section can be realized without changing the densities and shapes of cluster-size haloes by introducing a velocity dependent cross-section. Lowering the central densities of dwarf-size haloes, however, may change the strength of stellar feedback required to reproduce observed properties of dwarf galaxies such as the luminosity function of the Milky Way’s satellite galaxies. We perform simulations of galaxy formation by employing such a velocity dependent self-interaction cross-section to investigate the coupled effect of SIDM and feedback.


2021 ◽  
Vol 126 (9) ◽  
Author(s):  
E. O. Nadler ◽  
A. Drlica-Wagner ◽  
K. Bechtol ◽  
S. Mau ◽  
R. H. Wechsler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document