Spatio-temporal analysis of collective migration in vivo by particle image velocimetry

2021 ◽  
Author(s):  
María F Sampedro ◽  
Gastón L. Miño ◽  
Carolina D. Galetto ◽  
Valeria Sigot
Author(s):  
Ali Etebari ◽  
Claude Abiven ◽  
Olga Pierrakos ◽  
Pavlos P. Vlachos

Digital Particle Image Velocimetry (DPIV) currently represents the state of the art for non-invasive global flow velocity measurements. The instantaneous velocities are determined by cross-correlating patterns of particles between consecutive images, thus mapping in space and time the velocity distribution for thousands of points in the flow field simultaneously.


2012 ◽  
Vol 9 (77) ◽  
pp. 3378-3386 ◽  
Author(s):  
Richard J. Bomphrey ◽  
Per Henningsson ◽  
Dirk Michaelis ◽  
David Hollis

Aerodynamic structures generated by animals in flight are unstable and complex. Recent progress in quantitative flow visualization has advanced our understanding of animal aerodynamics, but measurements have hitherto been limited to flow velocities at a plane through the wake. We applied an emergent, high-speed, volumetric fluid imaging technique (tomographic particle image velocimetry) to examine segments of the wake of desert locusts, capturing fully three-dimensional instantaneous flow fields. We used those flow fields to characterize the aerodynamic footprint in unprecedented detail and revealed previously unseen wake elements that would have gone undetected by two-dimensional or stereo-imaging technology. Vortex iso-surface topographies show the spatio-temporal signature of aerodynamic force generation manifest in the wake of locusts, and expose the extent to which animal wakes can deform, potentially leading to unreliable calculations of lift and thrust when using conventional diagnostic methods. We discuss implications for experimental design and analysis as volumetric flow imaging becomes more widespread.


2011 ◽  
Vol 37 (3) ◽  
pp. 450-464 ◽  
Author(s):  
Fuxing Zhang ◽  
Craig Lanning ◽  
Luciano Mazzaro ◽  
Alex J. Barker ◽  
Phillip E. Gates ◽  
...  

Author(s):  
Andrew M. Walker ◽  
Clifton R. Johnston ◽  
Gary M. Dobson

Currently, an echo particle image velocimetry (ePIV) system for the investigation of in vivo blood flow and shear stress is under development at the University of Calgary. To date, encouraging preliminary results have been obtained when comparing ePIV derived velocities to analytical solutions. However, large discrepancies were noted between our steady state ePIV derived velocities and velocities measured using pulse wave Doppler (PWD). Ultrasound beam thickness, off axis centerline measurements and PWD angle of interrogation likely account for the differences observed.


Sign in / Sign up

Export Citation Format

Share Document