scholarly journals Tomographic particle image velocimetry of desert locust wakes: instantaneous volumes combine to reveal hidden vortex elements and rapid wake deformation

2012 ◽  
Vol 9 (77) ◽  
pp. 3378-3386 ◽  
Author(s):  
Richard J. Bomphrey ◽  
Per Henningsson ◽  
Dirk Michaelis ◽  
David Hollis

Aerodynamic structures generated by animals in flight are unstable and complex. Recent progress in quantitative flow visualization has advanced our understanding of animal aerodynamics, but measurements have hitherto been limited to flow velocities at a plane through the wake. We applied an emergent, high-speed, volumetric fluid imaging technique (tomographic particle image velocimetry) to examine segments of the wake of desert locusts, capturing fully three-dimensional instantaneous flow fields. We used those flow fields to characterize the aerodynamic footprint in unprecedented detail and revealed previously unseen wake elements that would have gone undetected by two-dimensional or stereo-imaging technology. Vortex iso-surface topographies show the spatio-temporal signature of aerodynamic force generation manifest in the wake of locusts, and expose the extent to which animal wakes can deform, potentially leading to unreliable calculations of lift and thrust when using conventional diagnostic methods. We discuss implications for experimental design and analysis as volumetric flow imaging becomes more widespread.

2013 ◽  
Vol 718-720 ◽  
pp. 2184-2190
Author(s):  
Bao Quan ◽  
Jiang Nan

Tomographic particle image velocimetry (Tomo-PIV) is a newly developed technique for three-component three-dimensional (3C-3D) velocity measurement based on the tomographic reconstruction of a 3D volume light intensity field from multiple two-dimensional projections. A simplification of 3D tomographic reconstruction model, which reduced from a 3D volume with 2D images to a 2D slice with 1D lines, simplify this 3D reconstruction into a problem of 2D plane reconstruction by means of optical tomography, is applied in this paper . The principles and details of the tomographic algorithm are discussed, as well as the study of ART and MART reconstruction algorithm is carried out by means of computer-simulated image reconstruction procedure. The three-dimensional volume particle field is reconstructed by MART reconstruction algorithm base on the simplified 3D reconstruction model which made a high reconstruction quality Q=81.37% prove that the way of simplification by MART reconstruction is feasible, so it could be applied in reconstruction of 3D particle field in tomographic particle image velocimetry system.


2011 ◽  
Vol 133 (6) ◽  
Author(s):  
Emily J. Berg ◽  
Risa J. Robinson

Emphysema is a progressive lung disease that involves permanent destruction of the alveolar walls. Fluid mechanics in the pulmonary region and how they are altered with the presence of emphysema are not well understood. Much of our understanding of the flow fields occurring in the healthy pulmonary region is based on idealized geometries, and little attention has been paid to emphysemic geometries. The goal of this research was to utilize actual replica lung geometries to gain a better understanding of the mechanisms that govern fluid motion and particle transport in the most distal regions of the lung and to compare the differences that exist between healthy and emphysematous lungs. Excised human healthy and emphysemic lungs were cast, scanned, graphically reconstructed, and used to fabricate clear, hollow, compliant models. Three dimensional flow fields were obtained experimentally using stereoscopic particle image velocimetry techniques for healthy and emphysematic breathing conditions. Measured alveolar velocities ranged over two orders of magnitude from the duct entrance to the wall in both models. Recirculating flow was not found in either the healthy or the emphysematic model, while the average flow rate was three times larger in emphysema as compared to healthy. Diffusion dominated particle flow, which is characteristic in the pulmonary region of the healthy lung, was not seen for emphysema, except for very small particle sizes. Flow speeds dissipated quickly in the healthy lung (60% reduction in 0.25 mm) but not in the emphysematic lung (only 8% reduction 0.25 mm). Alveolar ventilation per unit volume was 30% smaller in emphysema compared to healthy. Destruction of the alveolar walls in emphysema leads to significant differences in flow fields between the healthy and emphysemic lung. Models based on replica geometry provide a useful means to quantify these differences and could ultimately improve our understanding of disease progression.


2019 ◽  
Vol 44 (11) ◽  
pp. 2748 ◽  
Author(s):  
Jonathan Reyes ◽  
Darin Knaus ◽  
Danny Micka ◽  
Brynmor Davis ◽  
Vincent Belovich ◽  
...  

Author(s):  
Masaki Hiratsuka ◽  
Shinichiro Ito ◽  
Keita Miyasaka ◽  
Akihisa Konno

A knuckle shot, resulting from non-spinning kicking, is an essential technique in soccer. The irregular flight path of the knuckle shot is caused by the aerodynamic force from the three-dimensional twin vortices generated in the wake behind the ball. However, the detailed behavior of the twin vortices and relation between the jet flow and the acting forces on the balls is still not understood. In addition, a more thorough understanding of the effect of ball panels on the formation of twin vortices and jet flow is important to develop balls with high controllability. To study the effect of the ball panel shape on the flight path, stereo three-dimensional particle image velocimetry wake flow measurements and synchronized force measurements were performed on various soccer balls. It was confirmed that the aerodynamic force on the ball is produced by the jet flow generated by the vortices in the wake flow. The directions of the force followed the changes of the jet flow, and the magnitude of the force was strongly associated with the flow rate of the jet. Moreover, the shape of the ball panels, especially the groove volume, determines the critical Reynolds number and the fluttering of the balls.


Sign in / Sign up

Export Citation Format

Share Document