Dynamical evolution and decay of multi-charged quantum vortex in a Bose–Einstein condensate

2021 ◽  
Vol 19 (1) ◽  
pp. 015501
Author(s):  
G D Telles ◽  
P E S Tavares ◽  
A R Fritsch ◽  
A Cidrim ◽  
V S Bagnato

Abstract We report the observation of the twisted decay of quadruply charged vortices taking place in an atomic Bose–Einstein condensate. Supporting numerical simulations show that the singly-charged vortices, which result from the decay of a multi-charged vortex, twist around intertwined in the shape of helical Kelvin waves.

2019 ◽  
Vol 6 (3) ◽  
Author(s):  
Michael MacCormick Cawte ◽  
Xiaoquan Yu ◽  
Brian P. Anderson ◽  
Ashton Bradley

A quantum vortex dipole, comprised of a closely bound pair of vortices of equal strength with opposite circulation, is a spatially localized travelling excitation of a planar superfluid that carries linear momentum, suggesting a possible analogy with ray optics. We investigate numerically and analytically the motion of a quantum vortex dipole incident upon a step-change in the background superfluid density of an otherwise uniform two-dimensional Bose-Einstein condensate. Due to the conservation of fluid momentum and energy, the incident and refracted angles of the dipole satisfy a relation analogous to Snell’s law, when crossing the interface between regions of different density. The predictions of the analogue Snell’s law relation are confirmed for a wide range of incident angles by systematic numerical simulations of the Gross-Piteavskii equation. Near the critical angle for total internal reflection, we identify a regime of anomalous Snell’s law behaviour where the finite size of the dipole causes transient capture by the interface. Remarkably, despite the extra complexity of the interface interaction, the incoming and outgoing dipole paths obey Snell’s law.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yu Song ◽  
Yu Mo ◽  
Shiping Feng ◽  
Shi-Jie Yang

Dark solitons dynamically generated from a potential moving in a one-dimensional Bose-Einstein condensate are displayed. Based on numerical simulations of the Gross-Pitaevskii equation, we find that the moving obstacle successively emits a series of solitons which propagate at constant speeds. The dependence of soliton emission on the system parameters is examined. The formation mechanism of solitons is interpreted as interference between a diffusing wavepacket and the condensate background, enhanced by the nonlinear interactions.PACS numbers: 03.75.Mn, 03.75.Lm, 05.30.Jp


2021 ◽  
pp. 104849
Author(s):  
Hao Wu ◽  
Yuan Ren ◽  
Zhengliang Liu ◽  
Zhenyu Xiong ◽  
Ying Wang ◽  
...  

2012 ◽  
Vol 85 (2) ◽  
Author(s):  
B. Ramachandhran ◽  
Bogdan Opanchuk ◽  
Xia-Ji Liu ◽  
Han Pu ◽  
Peter D. Drummond ◽  
...  

2012 ◽  
Vol 26 (30) ◽  
pp. 1250164 ◽  
Author(s):  
DIDIER BELOBO BELOBO ◽  
GERMAIN HUBERT BEN-BOLIE ◽  
THIERRY BLANCHARD EKOGO ◽  
C. G. LATCHIO TIOFACK ◽  
TIMOLÉON CRÉPIN KOFANÉ

The modulational instability (MI) of Bose–Einstein condensates based on a modified Gross–Pitaevskii equation (GPE) which takes into account quantum fluctuations and a shape-dependent term, trapped in an external time-dependent complex potential is investigated. The external potential consists of an expulsive parabolic background with a complex potential and a gravitational field. The theoretical analysis uses a modified lens-type transformation which converts the modified GPE into a modified form without an explicit spatial dependence. A MI criterion and a growth rate are explicitly derived, both taking into account quantum fluctuations and the parameter related to the feeding or loss of atoms in the condensate which significantly affect the gain of instability of the condensate. Direct numerical simulations of the modified GPE show convincing agreements with analytical predictions. In addition, our numerical results also reveal that the gravitational field has three effects on the MI: (i) the deviation backward or forward of solitons trains, (ii) the enhancement of the appearance of the MI and (iii) the reduction of the lifetime of pulses. Moreover, numerical simulations proved that it is possible to control the propagation of the generated solitons trains by a proper choice of parameters characterizing both the loss or feeding of atoms and the gravitational field, respectively.


Sign in / Sign up

Export Citation Format

Share Document