Selective synthesis of three-dimensional ZnO@Ag/SiO 2 @Ag nanorod arrays as surface-enhanced Raman scattering substrates with tunable interior dielectric layer

2019 ◽  
Vol 28 (12) ◽  
pp. 124204
Author(s):  
Jia-Jia Mu ◽  
Chang-Yi He ◽  
Wei-Jie Sun ◽  
Yue Guan
2021 ◽  
Vol 14 (1) ◽  
pp. 228
Author(s):  
Xiaoqiao Huang ◽  
Li Cai ◽  
Tingting Fan ◽  
Kexi Sun ◽  
Le Yao ◽  
...  

Here we report a simple fabrication method for large-scale hybrid surface-enhanced Raman scattering (SERS) active substrates composed of Au-nanoparticle-decorated three-dimensional (3D) Cu(OH)2@HKUST-1 (Cu3(btc)2, H3btc = 1,3,5-benzenetricarboxylic acid) nanorod arrays on a woven Cu mesh (Cu mesh/Cu(OH)2@HKUST-1@Au). Cu(OH)2 nanorods were first obtained from a simple in situ chemical engraving Cu mesh and then utilized as self-sacrificing templates to achieve HKUST-1 nanocube-assembled nanorods; finally, Au nanoparticles (Au NPs) were sputtered onto the Cu(OH)2@HKUST-1 nanorods. Due to the large surface area, the three-dimensional Cu mesh/Cu(OH)2@HKUST-1 nanorods could load high-density Au NPs and capture target detection molecules, which is beneficial to the formation of a strong electromagnetic field coupling between Au NPs, and provides abundant “hot spots” for a sensitive and uniform SERS effect. Using the Cu mesh/Cu(OH)2@HKUST-1@Au nanorod arrays as the SERS substrate, 10−9 M Rhodamine 6G and 10−8 M 4-aminothiophenolcan were identified. To verify their practical application, the fabricated arrays were employed as SERS substrates for the detection of thiram, and 10−8 M thiram could be recognized. The hybrid SERS substrates show potential applications in the field of environmental pollutant detection and this is of great significance to the sustainable development of the environment.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Li Yuan ◽  
Jinghuai Fang ◽  
Yonglong Jin ◽  
Chaonan Wang ◽  
Tian Xu

We fabricated a simple, cheap, and functional surface enhanced Raman scattering substrate for biomedical application. Hot spots between two close silver nanoparticles distributed in the skeleton of a three-dimensional porous membrane, especially in the pores, were formed. The dual poles of micropores in the membrane were discussed. The pores could protect the silver nanoparticles in the pores from being oxidized, which makes the membrane effective for a longer period of time. In addition,Staphylococcus aureuscells could be trapped by the micropores and then the Raman signal became stronger, indicating that the functional surface enhanced Raman scattering substrate is reliable.


Sign in / Sign up

Export Citation Format

Share Document