Perpendicular magnetization and exchange bias in epitaxial NiO/[Ni/Pt]2 multilayers

2021 ◽  
Author(s):  
Lin-Ao Huang ◽  
Mei-Yu Wang ◽  
Peng Wang ◽  
Yuan Yuan ◽  
Ruo-Bai Liu ◽  
...  
2005 ◽  
Vol 72 (2) ◽  
Author(s):  
Haiwen Xi ◽  
T. F. Ambrose ◽  
T. J. Klemmer ◽  
R. van de Veerdonk ◽  
J. K. Howard ◽  
...  

Author(s):  
B. G. Demczyk

CoCr thin films have been of interest for a number of years due to their strong perpendicular anisotropy, favoring magnetization normal to the film plane. The microstructure and magnetic properties of CoCr films prepared by both rf and magnetron sputtering have been examined in detail. By comparison, however, relatively few systematic studies of the magnetic domain structure and its relation to the observed film microstructure have been reported. In addition, questions still remain as to the operative magnetization reversal mechanism in different film thickness regimes. In this work, the magnetic domain structure in magnetron sputtered Co-22 at.%Cr thin films of known microstructure were examined by Lorentz transmission electron microscopy. Additionally, domain nucleation studies were undertaken via in-situ heating experiments.It was found that the 50 nm thick films, which are comprised of columnar grains, display a “dot” type domain configuration (Figure 1d), characteristic of a perpendicular magnetization. The domain size was found to be on the order of a few structural columns in diameter.


2006 ◽  
Vol 299 (1) ◽  
pp. 11-20 ◽  
Author(s):  
E.C. Passamani ◽  
C. Larica ◽  
C. Marques ◽  
J.R. Proveti ◽  
A.Y. Takeuchi ◽  
...  

Author(s):  
Yechao Ling ◽  
Yong Hu ◽  
Haobo Wang ◽  
Ben Niu ◽  
Jiawei Chen ◽  
...  

Author(s):  
Peyton D. Murray ◽  
Christopher J. Jensen ◽  
Alberto Quintana ◽  
Junwei Zhang ◽  
Xixiang Zhang ◽  
...  

2021 ◽  
Vol 104 (1) ◽  
Author(s):  
Bimalesh Giri ◽  
Bhawna Sahni ◽  
C. Salazar Mejía ◽  
S. Chattopadhyay ◽  
Uli Zeitler ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
F. G. Silva ◽  
J. Depeyrot ◽  
Yu. L. Raikher ◽  
V. I. Stepanov ◽  
I. S. Poperechny ◽  
...  

AbstractExchange bias properties of MnFe$$_2$$ 2 O$$_4$$ 4 @$$\gamma$$ γ –Fe$$_2$$ 2 O$$_3$$ 3 core–shell nanoparticles are investigated. The measured field and temperature dependencies of the magnetization point out a well-ordered ferrimagnetic core surrounded by a layer with spin glass-like arrangement. Quasi-static SQUID magnetization measurements are presented along with high-amplitude pulse ones and are cross-analyzed by comparison against ferromagnetic resonance experiments at 9 GHz. These measurements allow one to discern three types of magnetic anisotropies affecting the dynamics of the magnetic moment of the well-ordered ferrimagnetic NP’s core viz. the easy-axis (uniaxial) anisotropy, the unidirectional exchange-bias anisotropy and the rotatable anisotropy. The uniaxial anisotropy originates from the structural core–shell interface. The unidirectional exchange-bias anisotropy is associated with the spin-coupling at the ferrimagnetic/spin glass-like interface; it is observable only at low temperatures after a field-cooling process. The rotatable anisotropy is caused by partially-pinned spins at the core/shell interface; it manifests itself as an intrinsic field always parallel to the external applied magnetic field. The whole set of experimental results is interpreted in the framework of superparamagnetic theory, i.e., essentially taking into account the effect of thermal fluctuations on the magnetic moment of the particle core. In particular, it is found that the rotatable anisotropy of our system is of a uniaxial type.


Sign in / Sign up

Export Citation Format

Share Document