Switchable directional scattering based on spoof core-shell plasmonic structures

2021 ◽  
Author(s):  
Yun-Qiao Yin ◽  
Hong-Wei Wu ◽  
Shu-Ling Cheng ◽  
Zong-Qiang Sheng
2018 ◽  
Vol 80 (3) ◽  
pp. 346-348 ◽  
Author(s):  
M. E. Kartseva ◽  
O. V. Dement’eva ◽  
A. V. Zaitseva ◽  
V. M. Rudoy

2006 ◽  
Author(s):  
Andrea Steinbrück ◽  
Andrea Csáki ◽  
Grit Festag ◽  
Wolfgang Fritzsche

Author(s):  
Hongjie Li ◽  
Hongyu Liu

In this paper, we give the mathematical construction of novel core-shell plasmonic structures that can induce anomalous localized resonance and invisibility cloaking at certain finite frequencies beyond the quasi-static limit. The crucial ingredient in our study is that the plasmon constant and the loss parameter are constructed in a delicate way that are correlated and depend on the source and the size of the plasmonic structure. As a significant by-product of this study, we also derive the complete spectrum of the Neumann–Poincáre operator associated with the Helmholtz equation with finite frequencies in the radial geometry. The spectral result is the first one in its type and is of significant mathematical interest for its own sake.


2020 ◽  
Vol 8 (44) ◽  
pp. 23323-23329
Author(s):  
Jing Hu ◽  
Siwei Li ◽  
Yuzhi Li ◽  
Jing Wang ◽  
Yunchen Du ◽  
...  

Crystalline–amorphous Ni–Ni(OH)2 core–shell assembled nanosheets exhibit outstanding electrocatalytic activity and stability for hydrogen evolution under alkaline conditions.


2015 ◽  
Vol 53 (4) ◽  
pp. 287-293
Author(s):  
Byung-Hyun Choi ◽  
Young Jin Kang ◽  
Sung-Hun Jung ◽  
Yong-Tae An ◽  
Mi-Jung Ji

2020 ◽  
Vol 65 (10) ◽  
pp. 904
Author(s):  
V. O. Zamorskyi ◽  
Ya. M. Lytvynenko ◽  
A. M. Pogorily ◽  
A. I. Tovstolytkin ◽  
S. O. Solopan ◽  
...  

Magnetic properties of the sets of Fe3O4(core)/CoFe2O4(shell) composite nanoparticles with a core diameter of about 6.3 nm and various shell thicknesses (0, 1.0, and 2.5 nm), as well as the mixtures of Fe3O4 and CoFe2O4 nanoparticles taken in the ratios corresponding to the core/shell material contents in the former case, have been studied. The results of magnetic research showed that the coating of magnetic nanoparticles with a shell gives rise to the appearance of two simultaneous effects: the modification of the core/shell interface parameters and the parameter change in both the nanoparticle’s core and shell themselves. As a result, the core/shell particles acquire new characteristics that are inherent neither to Fe3O4 nor to CoFe2O4. The obtained results open the way to the optimization and adaptation of the parameters of the core/shell spinel-ferrite-based nanoparticles for their application in various technological and biomedical domains.


Sign in / Sign up

Export Citation Format

Share Document