sustained drug delivery
Recently Published Documents


TOTAL DOCUMENTS

344
(FIVE YEARS 111)

H-INDEX

42
(FIVE YEARS 7)

Gels ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 12
Author(s):  
Muhammad Suhail ◽  
An Xie ◽  
Jia-Yu Liu ◽  
Wan-Chu Hsieh ◽  
Yu-Wen Lin ◽  
...  

The main focus of the current study was to sustain the releasing behavior of theophylline by fabricated polymeric microgels. The free radical polymerization technique was used for the development of aspartic acid-co-poly(2-acrylamido-2-methylpropanesulfonic acid) microgels while using various combinations of aspartic acid, 2-acrylamido-2-methylpropanesulfonic acid, and N′,N′-methylene bisacrylamide as a polymer, monomer, and cross-linker, respectively. Ammonium peroxodisulfate and sodium hydrogen sulfite were used as initiators. Characterizations such as DSC, TGA, SEM, FTIR, and PXRD were performed for the fabricated microgels to assess their thermal stability with unreacted polymer and monomer, their surface morphology, the formation of a new polymeric system of microgels by evaluating the cross-linking of functional groups of the microgels’ contents, and to analyze the reduction in crystallinity of the theophylline by fabricated microgels. Various studies such as dynamic swelling, drug loading, sol–gel analysis, in vitro drug release studies, and kinetic modeling were carried out for the developed microgels. Both dynamic swelling and percent drug release were found higher at pH 7.4 as compared to pH 1.2 due to the deprotonation of functional groups of aspartic acid and AMPS. Similarly, sol–gel analysis was performed and an increase in gel fraction was observed with the increasing concentration of microgel contents, while sol fraction was decreased. Conclusively, the prepared carrier system has the potential to sustain the release of the theophylline for an extended period of time.


2021 ◽  
pp. 100125
Author(s):  
Young Joo Sun ◽  
Cheng-Hui Lin ◽  
Man-Ru Wu ◽  
Soo Hyeon Lee ◽  
Jing Yang ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7191
Author(s):  
Andra Grava ◽  
Karina Egle ◽  
Arita Dubnika

Our research focuses on combining the valuable properties of silk fibroin (SF) and calcium phosphate (CaP). SF is a natural protein with an easily modifiable structure; CaP is a mineral found in the human body. Most of the new age biocomposites lack interaction between organic/inorganic phase, thus SF/CaP composite could not only mimic the natural bone, but could also be used to make drug delivery systems as well, which can ensure both healing and regeneration. CaP was synthesized in situ in SF at different pH values, and then crosslinked with gelatin (G), horseradish peroxide (HRP), and hydrogen peroxide (H2O2). In addition, dexamethasone phosphate (DEX) was incorporated in the hydrogel and drug delivery kinetics was studied. Hydrogel made at pH 10.0 was found to have the highest gel fraction 110.24%, swelling degree 956.32%, and sustained drug delivery for 72 h. The highest cell viability was observed for the hydrogel, which contained brushite (pH 6)—512.43%.


Biomedicines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1612
Author(s):  
Ilker S. Bayer

Polymer nanofibers have exceptionally high surface area. This is advantageous compared to bulk polymeric structures, as nanofibrils increase the area over which materials can be transported into and out of a system, via diffusion and active transport. On the other hand, since hydrogels possess a degree of flexibility very similar to natural tissue, due to their significant water content, hydrogels made from natural or biodegradable macromolecular systems can even be injectable into the human body. Due to unique interactions with water, hydrogel transport properties can be easily modified and tailored. As a result, combining nanofibers with hydrogels would truly advance biomedical applications of hydrogels, particularly in the area of sustained drug delivery. In fact, certain nanofiber networks can be transformed into hydrogels directly without the need for a hydrogel enclosure. This review discusses recent advances in the fabrication and application of biomedical nanofiber hydrogels with a strong emphasis on drug release. Most of the drug release studies and recent advances have so far focused on self-gelling nanofiber systems made from peptides or other natural proteins loaded with cancer drugs. Secondly, polysaccharide nanofiber hydrogels are being investigated, and thirdly, electrospun biodegradable polymer networks embedded in polysaccharide-based hydrogels are becoming increasingly popular. This review shows that a major outcome from these works is that nanofiber hydrogels can maintain drug release rates exceeding a few days, even extending into months, which is an extremely difficult task to achieve without the nanofiber texture. This review also demonstrates that some publications still lack careful rheological studies on nanofiber hydrogels; however, rheological properties of hydrogels can influence cell function, mechano-transduction, and cellular interactions such as growth, migration, adhesion, proliferation, differentiation, and morphology. Nanofiber hydrogel rheology becomes even more critical for 3D or 4D printable systems that should maintain sustained drug delivery rates.


Author(s):  
Hayder Kadhim Drais ◽  
Ahmed Abbas Hussein

Purpose: Felodipine, is a calcium-channel antagonist used for hypertension and angina pectoris. It is practically insoluble in aqueous media and shows low oral bioavailability (15%-20%). This investigation aims to prepare and characterize oral felodipine lipid-polymer hybrid nanocarriers (LPHNs) to increase solubility and control delivery for increasing bioavailability and enhance patient compliance. Methods: The newly microwave-based method was prepared with felodipine LPHNs (H1-H35) successfully. The (H1-H35) were subjected to thermodynamic stability experiments. After that, select nine felodipine LPHNs (F1-F9) that have smart physical stability for further optimization of different characterization processes. Results: The felodipine LPHNs (F4) are considered the most optimized formula. It was characterized by lower particle size (33.3 nm), lower PDI (0.314), high zeta potential (13.6 mV), entrapment efficiency is (81.645 %w/w), drug loading is (16.329 % w/w), the pH value is 4, excellent percent of light transmittance (95.5%), pseudoplastic rheogram, significantly high (p< 0.05) dissolution rate with sustained drug delivery and success ex-vivo intestinal permeation attributes. The (F4) subject for further investigations of fourier transformed infrared spectroscopy (FTIR), atomic force microscopy (AFM), and transmission electron microscopy (TEM). The results of FTIR, AFM, and TEM indicate there is no interaction between the felodipine and excipients and that the particulate system in the nanoscale dispersion system confirms the high stability. Conclusion: The optimized felodipine LPHNs (F1-F9) formulations were smart formulations for sustained oral delivery of felodipine and that F4 was the most optimized formula according to its characterization processes.


Sign in / Sign up

Export Citation Format

Share Document