Core/Shell electrospun fibers as biodegradable scaffolds for sustained drug delivery in Wound Healing applications

Pneumologie ◽  
2014 ◽  
Vol 68 (06) ◽  
Author(s):  
A Repanas ◽  
H Zernetsch ◽  
B Glasmacher
Author(s):  
Luis Castillo-Henríquez ◽  
Jose Castro-Alpízar ◽  
Mary Lopretti-Correa ◽  
José Vega-Baudrit

innate and adaptive immune responses lead to wound healing by regulating a complex series of events promoting cellular cross-talk. An inflammatory response is presented with its characteristic clinical symptoms: heat, pain, redness, and swelling. Some smart thermo-responsive polymers like chitosan can be used to create biocompatible and biodegradable scaffolds with 3D architectures similar to human structures, allowing their efficient and safe use as tissue engineering and drug delivery systems in chronic wounds. Locally heated tumors above polymer lower critical solution temperature can induce its conversion into a hydrophobic form, enhancing drug release until the thermal stimulus is gone, where a lower release is due to the swelling of the material. This paper integrates the relevant reported contributions of bioengineered scaffolds for thermo-responsive drug delivery in wound healing. Therefore, we present a comprehensive review that aims to demonstrate the capacity of these systems to provide spatially and temporally controlled release strategies for one or more drugs used in wound healing. In this sense, the novel manufacturing techniques of 3D-printing and electrospinning are explored for the tuning of their physicochemical properties to adjust therapies according to the patient’s convenience, as well as reduce drug toxicity and side effects.


2018 ◽  
Vol 303 (5) ◽  
pp. 1700666 ◽  
Author(s):  
Panpan Ma ◽  
Shuangquan Gou ◽  
Min Wang ◽  
Jiucun Chen ◽  
Wei Hu ◽  
...  

2014 ◽  
Vol 45 (1) ◽  
pp. 13-22 ◽  
Author(s):  
Sudheer Betha ◽  
B. Pamula Reddy ◽  
M. Mohan Varma ◽  
D. Basava Raju ◽  
Venkata Ramana Murthy Kolapalli

Pharmaceutics ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 87 ◽  
Author(s):  
Giulia Auriemma ◽  
Andrea Cerciello ◽  
Rita P. Aquino ◽  
Pasquale Del Gaudio ◽  
Bruno M. Fusco ◽  
...  

Core-shell beads loaded with betamethasone were developed using co-axial prilling as production technique and pectin plus alginate as polymeric carriers. During this study, many operative conditions were intensively investigated to find the best ones necessary to produce uniform core-shell particle systems in a reproducible way. Particularly, feed solutions’ composition, polymers mass ratios and the effect of the main process parameters on particles production, micromeritics, inner structure, drug loading and drug-release/swelling profiles in simulated biological fluids were studied. The optimized core-shell formulation F5 produced with a pectin core concentration of 4.0% w/v and an alginate shell concentration of 2.0% w/v (2:1 core:shell ratio) acted as a sustained drug delivery system. It was able to reduce the early release of the drug in the upper part of the gastro-intestinal tract for the presence of the zinc-alginate gastro-resistant outer layer and to specifically deliver it in the colon, thanks to the selectivity of amidated low methoxy pectin core for this district. Therefore, these particles may be proposed as colon targeted drug delivery systems useful for inflammatory bowel disease (IBD) therapy.


Author(s):  
Ghildiyal s

Hydrodynamically Balanced systems have wide development as they have achieved the parameters of modern drug delivery system, it is a type of system which owes very tremendous and curative benefits for the delivery of oral controlled release dosage forms and have wide properties in many aspects such as its main role is to maintain the effective concentration in the system for longer period of time. To reduce the gastric mucosal irritation due to the presence of synthetic polymers, being a natural polymer incorporation of Plantago ovate (Psyllium Husk) could ease out the mucosal irritation in the gastric region. Due to its properties such as a rate-controlling polymer possessing a very good quality of swelling and good gelling nature, and also incorporated as a matrix-forming agent basically in the modified release formulation. Locust bean gum can be used as sustained-release carriers and release modifiers for the delivery of drugs. It is a neutral plant galactomannan extracted from the seeds (kernels) of the carob tree Ceratonia siliqua L fabaceae. Nowadays it is focussing polymer and a lot of researchers are focussing on exploring the potential in topical drug delivery, colonic drug delivery, oral sustained drug delivery, ocular drug delivery, buccal drug delivery.


Author(s):  
Prashant Malik ◽  
Neha Gulati ◽  
Raj Kaur Malik ◽  
Upendra Nagaich

Nanotechnology deal with the particle size in nanometers. Nanotechnology is ranging from extensions of conventional device physics to completely new approaches based upon molecular self assembly, from developing new materials with dimensions on the nanoscale to direct control of matter on the atomic scale. In nanotechnology mainly three types of nanodevices are described: carbon nanotubes, quantum dots and dendrimers. It is a recent technique used as small size particles to treat many diseases like cancer, gene therapy and used as diagnostics. Nanotechnology used to formulate targeted, controlled and sustained drug delivery systems. Pharmaceutical nanotechnology embraces applications of nanoscience to pharmacy as nanomaterials and as devices like drug delivery, diagnostic, imaging and biosensor materials. Pharmaceutical nanotechnology has provided more fine tuned diagnosis and focused treatment of disease at a molecular level.    


Sign in / Sign up

Export Citation Format

Share Document