An extended improved global structure model for influential nodes identification in complex networks

2021 ◽  
Author(s):  
Jing-Cheng Zhu ◽  
Lun-Wen Wang
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aman Ullah ◽  
Bin Wang ◽  
JinFang Sheng ◽  
Jun Long ◽  
Nasrullah Khan ◽  
...  

AbstractIdentification of Influential nodes in complex networks is challenging due to the largely scaled data and network sizes, and frequently changing behaviors of the current topologies. Various application scenarios like disease transmission and immunization, software virus infection and disinfection, increased product exposure and rumor suppression, etc., are applicable domains in the corresponding networks where identification of influential nodes is crucial. Though a lot of approaches are proposed to address the challenges, most of the relevant research concentrates only on single and limited aspects of the problem. Therefore, we propose Global Structure Model (GSM) for influential nodes identification that considers self-influence as well as emphasizes on global influence of the node in the network. We applied GSM and utilized Susceptible Infected Recovered model to evaluate its efficiency. Moreover, various standard algorithms such as Betweenness Centrality, Profit Leader, H-Index, Closeness Centrality, Hyperlink Induced Topic Search, Improved K-shell Hybrid, Density Centrality, Extended Cluster Coefficient Ranking Measure, and Gravity Index Centrality are employed as baseline benchmarks to evaluate the performance of GSM. Similarly, we used seven real-world and two synthetic multi-typed complex networks along-with different well-known datasets for experiments. Results analysis indicates that GSM outperformed the baseline algorithms in identification of influential node(s).


2021 ◽  
Vol 1738 ◽  
pp. 012026
Author(s):  
Li Mijia ◽  
Wei Hongquan ◽  
Li Yingle ◽  
Liu Shuxin

2017 ◽  
Vol 64 (6) ◽  
pp. 685-689 ◽  
Author(s):  
Ali Moradi Amani ◽  
Mahdi Jalili ◽  
Xinghuo Yu ◽  
Lewi Stone

Author(s):  
Shi Dong ◽  
Wengang Zhou

Influential node identification plays an important role in optimizing network structure. Many measures and identification methods are proposed for this purpose. However, the current network system is more complex, the existing methods are difficult to deal with these networks. In this paper, several basic measures are introduced and discussed and we propose an improved influential nodes identification method that adopts the hybrid mechanism of information entropy and weighted degree of edge to improve the accuracy of identification (Hm-shell). Our proposed method is evaluated by comparing with nine algorithms in nine datasets. Theoretical analysis and experimental results on real datasets show that our method outperforms other methods on performance.


Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1570 ◽  
Author(s):  
Jingcheng Zhu ◽  
Lunwen Wang

Identifying influential nodes in complex networks is of great significance for clearly understanding network structure and maintaining network stability. Researchers have proposed many classical methods to evaluate the propagation impact of nodes, but there is still some room for improvement in the identification accuracy. Degree centrality is widely used because of its simplicity and convenience, but it has certain limitations. We divide the nodes into neighbor layers according to the distance between the surrounding nodes and the measured node. Considering that the node’s neighbor layer information directly affects the identification result, we propose a new node influence identification method by combining degree centrality information about itself and neighbor layer nodes. This method first superimposes the degree centrality of the node itself with neighbor layer nodes to quantify the effect of neighbor nodes, and then takes the nearest neighborhood several times to characterize node influence. In order to evaluate the efficiency of the proposed method, the susceptible–infected–recovered (SIR) model was used to simulate the propagation process of nodes on multiple real networks. These networks are unweighted and undirected networks, and the adjacency matrix of these networks is symmetric. Comparing the calculation results of each method with the results obtained by SIR model, the experimental results show that the proposed method is more effective in determining the node influence than seven other identification methods.


2020 ◽  
Vol 414 ◽  
pp. 18-26
Author(s):  
Gouheng Zhao ◽  
Peng Jia ◽  
Anmin Zhou ◽  
Bing Zhang

Sign in / Sign up

Export Citation Format

Share Document