Approximate solutions of Dirac equation with a ring-shaped Woods-Saxon potential by Nikiforov-Uvarov method

2013 ◽  
Vol 37 (11) ◽  
pp. 113104 ◽  
Author(s):  
H. Hassanabadi ◽  
E. Maghsoodi ◽  
S. Zarrinkamar
2013 ◽  
Vol 22 (12) ◽  
pp. 1350092 ◽  
Author(s):  
A. A. OTHMAN ◽  
M. DE MONTIGNY ◽  
F. C. KHANNA

We derive and solve the Galilean covariant Dirac equation, also called "Lévy-Leblond equation", for spin-½ particles in a Woods–Saxon potential. We obtain this wave equation with a Galilean covariant approach, which is based on a (4+1)-dimensional manifold with light-cone coordinates followed by a reduction to the (3+1)-dimensional Galilean space-time. We apply the Pekeris approximation and exploit the Nikiforov–Uvarov method to find the energy eigenvalues and eigenfunctions.


2014 ◽  
Vol 11 (4) ◽  
pp. 432-442 ◽  
Author(s):  
Akpan N. Ikot ◽  
H. Hassanabadi ◽  
E. Maghsoodi ◽  
Saber Zarrinkamar

2010 ◽  
Vol 19 (07) ◽  
pp. 1463-1475 ◽  
Author(s):  
V. H. BADALOV ◽  
H. I. AHMADOV ◽  
S. V. BADALOV

The radial part of the Klein–Gordon equation for the Woods–Saxon potential is solved. In our calculations, we have applied the Nikiforov–Uvarov method by using the Pekeris approximation to the centrifugal potential for any l-states. The exact bound state energy eigenvalues and the corresponding eigenfunctions are obtained on the various values of the quantum numbers n and l. The nonrelativistic limit of the bound state energy spectrum was also found.


2018 ◽  
Vol 11 ◽  
pp. 1094-1099 ◽  
Author(s):  
C.A. Onate ◽  
O. Adebimpe ◽  
A.F. Lukman ◽  
I.J. Adama ◽  
E.O. Davids ◽  
...  

2011 ◽  
Vol 3 (2) ◽  
pp. 239-247 ◽  
Author(s):  
M. Eshghi ◽  
H. Mehraban

We study the Dirac equation for the q-deformed hyperbolic Scarf potential including a coulomb-like tensor potential under the spin symmetry. The parametric generalization of the Nikiforov-Uvarov method is used to obtain the energy eigenvalues equation and the unnormalized wave functins.Keywords: Dirac equation; q-deformed hyperbolic Scarf; Spin symmetry; Tensor coupling.© 2011 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.doi:10.3329/jsr.v3i2.7295                 J. Sci. Res. 3 (2), 239-247 (2011)


1981 ◽  
Vol 59 (11) ◽  
pp. 1614-1619 ◽  
Author(s):  
R. A. Moore ◽  
Sam Lee

This work was written to clarify the use of a recently developed procedure to obtain approximate solutions of the one-particle Dirac equation directly and in response to a recent critique on its application to lowest order. The critique emphasized the fact that when the wave functions are determined only to zero order then a first order energy calculation contains significant errors of the order of α4, α being the fine structure constant, and a matrix element calculation error of order α2. Tomishima re-affirms that higher order solutions are required to obtain accuracy of these orders. In this work the hierarchy of equations occurring in the procedure is extended to first order and it is shown that exact solutions exist for hydrogen-like atoms. It is also shown that the energy in second order contains all of the contributions of order α4. In addition, we illustrate, in detail, that the procedure can be aplied in such a way as to isolate the individual components of the wave functions and energies as power series of α2. This analysis lays the basis for the determination of suitable numerical methods and hence for application to physical systems.


2015 ◽  
Vol 2015 ◽  
pp. 1-17 ◽  
Author(s):  
Hilmi Yanar ◽  
Ali Havare

Spin and pseudospin symmetric Dirac spinors and energy relations are obtained by solving the Dirac equation with centrifugal term for a new suggested generalized Manning-Rosen potential which includes the potentials describing the nuclear and molecular structures. To solve the Dirac equation the Nikiforov-Uvarov method is used and also applied the Pekeris approximation to the centrifugal term. Energy eigenvalues for bound states are found numerically in the case of spin and pseudospin symmetry. Besides, the data attained in the present study are compared with the results obtained in the previous studies and it is seen that our data are consistent with the earlier ones.


Sign in / Sign up

Export Citation Format

Share Document