Large-signal characterizations of DDR IMPATT devices based on group III–V semiconductors at millimeter-wave and terahertz frequencies

2014 ◽  
Vol 35 (8) ◽  
pp. 084003 ◽  
Author(s):  
Aritra Acharyya ◽  
Aliva Mallik ◽  
Debopriya Banerjee ◽  
Suman Ganguli ◽  
Arindam Das ◽  
...  
Author(s):  
Tom K. Johansen ◽  
Virginio Midili ◽  
Michele Squartecchia ◽  
Vitaliy Zhurbenko ◽  
Virginie Nodjiadjim ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-11
Author(s):  
Bhadrani Banerjee ◽  
Anvita Tripathi ◽  
Adrija Das ◽  
Kumari Alka Singh ◽  
Aritra Acharyya ◽  
...  

The authors have carried out the large-signal (L-S) simulation of double-drift region (DDR) impact avalanche transit time (IMPATT) diodes based on 111, 100, and 110 oriented GaAs. A nonsinusoidal voltage excited (NSVE) L-S simulation technique is used to investigate both the static and L-S performance of the above-mentioned devices designed to operate at millimeter-wave (mm-wave) atmospheric window frequencies, such as 35, 94, 140, and 220 GHz. Results show that 111 oriented GaAs diodes are capable of delivering maximum RF power with highest DC to RF conversion efficiency up to 94 GHz; however, the L-S performance of 110 oriented GaAs diodes exceeds their other counterparts while the frequency of operation increases above 94 GHz. The results presented in this paper will be helpful for the future experimentalists to choose the GaAs substrate of appropriate orientation to fabricate DDR GaAs IMPATT diodes at mm-wave frequencies.


2014 ◽  
Vol 6 (3-4) ◽  
pp. 243-251 ◽  
Author(s):  
Tom K. Johansen ◽  
Matthias Rudolph ◽  
Thomas Jensen ◽  
Tomas Kraemer ◽  
Nils Weimann ◽  
...  

In this paper, the small- and large-signal modeling of InP heterojunction bipolar transistors (HBTs) in transferred substrate (TS) technology is investigated. The small-signal equivalent circuit parameters for TS-HBTs in two-terminal and three-terminal configurations are determined by employing a direct parameter extraction methodology dedicated to III–V based HBTs. It is shown that the modeling of measured S-parameters can be improved in the millimeter-wave frequency range by augmenting the small-signal model with a description of AC current crowding. The extracted elements of the small-signal model structure are employed as a starting point for the extraction of a large-signal model. The developed large-signal model for the TS-HBTs accurately predicts the DC over temperature and small-signal performance over bias as well as the large-signal performance at millimeter-wave frequencies.


Sign in / Sign up

Export Citation Format

Share Document