scholarly journals Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3,4-ethylenedioxythiophene) (PEDOT) film

2006 ◽  
Vol 3 (1) ◽  
pp. 59-70 ◽  
Author(s):  
Kip A Ludwig ◽  
Jeffrey D Uram ◽  
Junyan Yang ◽  
David C Martin ◽  
Daryl R Kipke
2016 ◽  
Vol 32 ◽  
pp. 57-67 ◽  
Author(s):  
Hamid Charkhkar ◽  
Gretchen L. Knaack ◽  
Daniel G. McHail ◽  
Himadri S. Mandal ◽  
Nathalia Peixoto ◽  
...  

2020 ◽  
Vol 10 (6) ◽  
pp. 6912-6925

In the present study, the electrosynthesis and the electrochemical characterization of azo dyes doped poly(3,4-ethylenedioxythiophene (PEDOT) were described. PEDOT film was electrochemically deposited onto indium doped tin oxide (ITO) coated/glass electrode, following azo dyes adsorption. The electropolymerized-PEDOT films on ITO glass were doped with various azo dyes; 4-Phenylazo-2-phenyliminomethyl-phenol (PAPM), 4-Phenylazo-2-(p-tolyimino-methyl)-phenol (PATM) and 4-[(2-Hydroxy-5-phenylazo-benzylidene)-amino]-benzenesulfonic acid (HPAB). The structures of azo dyes-doped PEDOT were characterized via cycle voltammograms and electrochemical impedance spectroscopy (EIS). Diverse doping counterions have a significant influence on the electrochemical behaviour of electropolymerized-PEDOT film. The electropolymerized-PEDOT doped by HPAB (PEDOT-HPAB) film possesses higher electrochemical activity than other azo dye-doped PEDOT composites. The main characteristics of PEDOT-azo dyes films contain uniformity, durability, and adherent on ITO electrodes, which are better when it is compared to PEDOT film.


2013 ◽  
Vol 25 (3) ◽  
pp. 931-940 ◽  
Author(s):  
Gergely Márton ◽  
István Bakos ◽  
Zoltán Fekete ◽  
István Ulbert ◽  
Anita Pongrácz

Author(s):  
Mingyu Ryu ◽  
Kyung Hwa Lee ◽  
Minkyung Sim ◽  
Seunguk Kim ◽  
Byoung-Ok Jun ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Elmer Guzman ◽  
Zhuowei Cheng ◽  
Paul K. Hansma ◽  
Kenneth R. Tovar ◽  
Linda R. Petzold ◽  
...  

AbstractWe developed a method to non-invasively detect synaptic relationships among neurons from in vitro networks. Our method uses microelectrode arrays on which neurons are cultured and from which propagation of extracellular action potentials (eAPs) in single axons are recorded at multiple electrodes. Detecting eAP propagation bypasses ambiguity introduced by spike sorting. Our methods identify short latency spiking relationships between neurons with properties expected of synaptically coupled neurons, namely they were recapitulated by direct stimulation and were sensitive to changing the number of active synaptic sites. Our methods enabled us to assemble a functional subset of neuronal connectivity in our cultures.


Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 316
Author(s):  
Cong Wang ◽  
Yu-Chen Wei ◽  
Ho-Kun Sung ◽  
Alok Kumar ◽  
Zhong-Liang Zhou ◽  
...  

High density electrocorticography (ECoG)-based microelectrode arrays (MEAs) are fabricated to timely record the neural activities to provide the fundamental understanding in neuroscience and biomedical engineering. This paper aims to introduce a device-based concept and wafer-scale fabrication process for MEAs. Flexible and biocompatible polyimide is applied on MEAs to bear all possible stress and strain. Detailed fabrication key techniques, including surface treatment, polyimide stability measurement, evaporation process, and curing conditions, have been discussed thoroughly. Moreover, the fabricated polyimide-based MEAs are surface-mounted on well-packaged printed circuit boards (PCBs) via a slot-type connector without any additional wire bonding to make the signal recording process easier. An absence seizure was recorded during the in vivo test, which shows the availability of signal recording based on the presented MEAs. The proposed MEAs could be remained at the skull, while the connector and PCBs can be disassembled apart. Therefore, the testing sample will get less suffering. To verify the robustness of the fabricated MEAs, the impedance properties were characterized using electrochemical impedance spectroscopy. The measured results indicate an average impedance of 12.3 ± 0.675 kΩ at 1 kHz. In total, 10 groups of MEAs were sample tested, and over 90% of the total 60 channels per 1-MEAs operated efficiently.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Claus Moseke ◽  
Katharina Wimmer ◽  
Markus Meininger ◽  
Julia Zerweck ◽  
Cornelia Wolf-Brandstetter ◽  
...  

AbstractTo develop implants with improved bone ingrowth, titanium substrates were coated with homogeneous and dense struvite (MgNH4PO4·6H2O) layers by means of electrochemically assisted deposition. Strontium nitrate was added to the coating electrolyte in various concentrations, in order to fabricate Sr-doped struvite coatings with Sr loading ranging from 10.6 to 115 μg/cm2. It was expected and observed that osteoclast activity surrounding the implant was inhibited. The cytocompatibility of the coatings and the effect of Sr-ions in different concentrations on osteoclast formation were analyzed in vitro. Osteoclast differentiation was elucidated on morphological, biochemical as well as on gene expression level. It could be shown that moderate concentrations of Sr2+ had an inhibitory effect on osteoclast formation, while the growth of osteoblastic cells was not negatively influenced compared to pure struvite surfaces. In summary, the electrochemically deposited Sr-doped struvite coatings are a promising approach to improve bone implant ingrowth.


Sign in / Sign up

Export Citation Format

Share Document