scholarly journals High-resolution shallow reflection seismic integrated with other geophysical methods for hydrogeological prospecting in the Nylsvley Nature Reserve, South Africa

2018 ◽  
Vol 15 (6) ◽  
pp. 2658-2673 ◽  
Author(s):  
E O Onyebueke ◽  
M S D Manzi ◽  
R J Durrheim
Geophysics ◽  
2001 ◽  
Vol 66 (1) ◽  
pp. 78-89 ◽  
Author(s):  
Donat Demanet ◽  
François Renardy ◽  
Kris Vanneste ◽  
Denis Jongmans ◽  
Thierry Camelbeeck ◽  
...  

As part of a paleoseismological investigation along the Bree fault scarp (western border of the Roer Graben), various geophysical methods [electrical profiling, electromagnetic (EM) profiling, refraction seismic tests, electrical tomography, ground‐penetrating radar (GPR), and high‐resolution reflection seismic profiles] were used to locate and image an active fault zone in a depth range between a few decimeters to a few tens of meters. These geophysical investigations, in parallel with geomorphological and geological analyses, helped in the decision to locate trench excavations exposing the fault surfaces. The results could then be checked with the observations in four trenches excavated across the scarp. Geophysical methods pointed out anomalies at all sites of the fault position. The contrast of physical properties (electrical resistivity and permittivity, seismic velocity) observed between the two fault blocks is a result of a differences in the lithology of the juxtaposed soil layers and of a change in the water table depth across the fault. Extremely fast techniques like electrical and EM profiling or seismic refraction profiles localized the fault position within an accuracy of a few meters. In a second step, more detailed methods (electrical tomography and GPR) more precisely imaged the fault zone and revealed some structures that were observed in the trenches. Finally, one high‐resolution reflection seismic profile imaged the displacement of the fault at depths as large as 120 m and filled the gap between classical seismic reflection profiles and the shallow geophysical techniques. Like all geophysical surveys, the quality of the data is strongly dependent on the geologic environment and on the contrast of the physical properties between the juxtaposed formations. The combined use of various geophysical techniques is thus recommended for fault mapping, particularly for a preliminary investigation when the geological context is poorly defined.


2021 ◽  
Author(s):  
Ulrich Polom ◽  
Rebekka Mecking ◽  
Phillip Leineweber ◽  
Andreas Omlin

<p>In the North German Basin salt tectonics generated a wide range of evaporite structures since the Upper Triassic, resulting in e.g. extended salt walls, salt diapirs, and salt pillows in the depth range up to 8 km. Due to their trap and seal properties these structures were in the focus of hydrocarbon exploration over many decades, leading to an excellent mapping of their geometries below 300 m in depth. During salt rise Rotliegend formations were partly involved as a constituent. Some structures penetrated the salt table, some also the former surface. Dissolution (subrosion) and erosion of the salt cap rock by meteoric water took place, combined with several glacial and intraglacial overprints. Finally the salt structures were covered by pleistocene and holocene sediments. This situation partly resulted in proneness for ongoing karstification of the salt cap rock, leading to e.g. local subsidence and sinkhole occurrence at the surface. The geometry, structure and internal lithology of these shallow salt cap rocks are widely unknown. Expanding urban and industrial development, water resources management and increasing climate change effects enhance the demands for shallow mapping and characterization of these structures regarding save building grounds and sustainable water resources.</p><p>Results of shallow drilling investigations of the salt cap rock and the overburden show unexpectedly heterogenous subsurface conditions, yielding to limited success towards mapping and characterization. Thus, shallow high-resolution geophysical methods are in demand to close the gaps with preferred focus of applicability in urban and industrial environments. Method evaluations starting in 2010 geared towards shallow high-resolution reflection seismic to meet the requirements of both depth penetration and structure resolution. Since 2017 a combination of S-wave and P-wave seismic methods including depth calibrations by Vertical Seismic Profiling (VSP) enabled 2.5D subsurface imaging starting few meters below the surface up to several hundred meters depth in 0.5-5 m resolution range, respectively. The resulting profiles image strong variations along the boundaries and on top of the salt cap rock. Beside improved mapping capabilities, aim of research is the development of characteristic data features to differentiate save and non-save areas.</p>


Geophysics ◽  
1998 ◽  
Vol 63 (4) ◽  
pp. 1295-1309 ◽  
Author(s):  
Ranajit Ghose ◽  
Vincent Nijhof ◽  
Jan Brouwer ◽  
Yoshikazu Matsubara ◽  
Yasuhiro Kaida ◽  
...  

In shallow engineering‐geophysical applications, there is a lack of controlled, nondestructive, high‐resolution mapping tools, particularly for the target depth that ground‐penetrating radar cannot reach but which is too shallow for other conventional geophysical methods. For soft soil, this corresponds to a depth of 2 to 30 m. We have developed a portable, high‐frequency P-wave vibrator system that is capable of bridging this gap. As far as the important contribution of the seismic source is concerned, penetration and resolution can be individually controlled through easy modulation of the sweep signal generated by this electromagnetic vibrator. The feasibility of this system has been tested in shallow (10–50 m) to very shallow (0–10 m) applications. Seven field data sets representing varying geology, site conditions, and exploration targets are presented to illustrate the applicability. The first three examples show the potential of this portable vibrator source in shallow applications. Under favorable situations, a maximum resolution of about 20 cm for events located at 15–30 m depth could be achieved. Because high‐frequency seismic waves suffer from severe attenuation in the dry, unsaturated weathered zone, the penetration is relatively limited when the water table is deeper than 4–5 m. The fourth to seventh field examples illustrate very shallow applications at noisy, asphalt‐paved urban sites that are often encountered in civil, geotechnical, and environmental engineering projects. The prospecting targets were thin soil layers or small buried objects. On asphalt, the vibrator can produce high‐frequency energy easily. The fourth example shows high‐resolution delineation of very shallow soil structures. The last three examples present successful location of buried bodies—often small and closely spaced—in soft soil at depths of 0.5 to 5 m. We observe well‐defined reflection events of frequency exceeding 200 Hz. These results suggest that high‐frequency seismic reflection imaging using the portable vibrator system can indeed serve as a powerful, nondestructive technique for shallow to very shallow underground prospecting.


Author(s):  
N.J. Smit ◽  
A.J. Davies

Developmental stages of a haemogregarine were found within polychromatocytes and erythrocytes in Giemsa-stained blood smears from six evileye pufferfish (Amblyrhynchotes honckenii) caught at Koppie Alleen in the De Hoop Nature Reserve, South Africa. This unusual haemogregarine, Haemogregarina (sensu lato) koppiensis sp. nov., was characterized by encapsulated gamonts with recurved tails, features more common in haemogregarines infecting amphibian and reptilian erythrocytes than in those from fish. Haemogregarina koppiensis is only the third species of fish haemogregarine to have been described from South Africa.


Solid Earth ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 1685-1705
Author(s):  
Silvia Salas-Romero ◽  
Alireza Malehmir ◽  
Ian Snowball ◽  
Benoît Dessirier

Abstract. Quick-clay landslides are common geohazards in Nordic countries and Canada. The presence of potential quick clays is confirmed using geotechnical investigations, but near-surface geophysical methods, such as seismic and resistivity surveys, can also help identify coarse-grained materials associated with the development of quick clays. We present the results of reflection seismic investigations on land and in part of the Göta River in Sweden, along which many quick-clay landslide scars exist. This is the first time that such a large-scale reflection seismic investigation has been carried out to study the subsurface structures associated with quick-clay landslides. The results also show a reasonable correlation with radio magnetotelluric and travel-time tomography models of the subsurface. Other ground geophysical data, such as high magnetic values, suggest a positive correlation with an increased thickness of the coarse-grained layer and shallower depths to the top of the bedrock and the top of the coarse-grained layer. The morphology of the river bottom and riverbanks, e.g. subaquatic landslide deposits, is shown by side-scan sonar and bathymetric data. Undulating bedrock, covered by subhorizontal sedimentary glacial and postglacial deposits, is clearly revealed. An extensive coarse-grained layer (P-wave velocity mostly between 1500 and 2500 m s−1 and resistivity from approximately 80 to 100 Ωm) exists within the sediments and is interpreted and modelled in a regional context. Several fracture zones are identified within the bedrock. Hydrological modelling of the coarse-grained layer confirms its potential for transporting fresh water infiltrated in fractures and nearby outcrops located in the central part of the study area. The modelled groundwater flow in this layer promotes the leaching of marine salts from the overlying clays by seasonal inflow–outflow cycles and/or diffusion, which contributes to the formation of potential quick clays.


Bothalia ◽  
1993 ◽  
Vol 23 (1) ◽  
pp. 153-174 ◽  
Author(s):  
D. J. Mcdonald

The Marloth Nature Reserve, encompassing the mountain catchments of the southern Langeberg immediately above Swellendam, Cape Province. South Africa, is described. The vegetation of the reserve was sampled along a transect representing the variation in plant communities over the range from the lower south to the lower north slopes. Eighty-three sample sites were subjectively located in mature stands of fynbos vegetation (10 years old). The relev£ data were initially classified using TWINSPAN and then refined by Braun-Blanquet (BB) phytosociological procedures. The Afromontane Forest patches which occur mainly on the lower south slopes were not sampled but are briefly discussed. The fynbos plant communities are described, based on tables, and a hierarchical classification is proposed.


Sign in / Sign up

Export Citation Format

Share Document