scholarly journals Interacting Non-Abelian Anti-Symmetric Tensor Field Theories

2018 ◽  
Vol 1000 ◽  
pp. 012141
Author(s):  
K Ekambaram ◽  
A S Vytheeswaran
2021 ◽  
Vol 11 (18) ◽  
pp. 8763
Author(s):  
Carlos Barceló ◽  
Raúl Carballo-Rubio ◽  
Luis J. Garay ◽  
Gerardo García-Moreno

One of the main problems that emergent-gravity approaches face is explaining how a system that does not contain gauge symmetries ab initio might develop them effectively in some regime. We review a mechanism introduced by some of the authors for the emergence of gauge symmetries in [JHEP 10 (2016) 084] and discuss how it works for interacting Lorentz-invariant vector field theories as a warm-up exercise for the more convoluted problem of gravity. Then, we apply this mechanism to the emergence of linear diffeomorphisms for the most general Lorentz-invariant linear theory of a two-index symmetric tensor field, which constitutes a generalization of the Fierz–Pauli theory describing linearized gravity. Finally we discuss two results, the well-known Weinberg–Witten theorem and a more recent theorem by Marolf, that are often invoked as no-go theorems for emergent gravity. Our analysis illustrates that, although these results pinpoint some of the particularities of gravity with respect to other gauge theories, they do not constitute an impediment for the emergent gravity program if gauge symmetries (diffeomorphisms) are emergent in the sense discussed in this paper.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 830
Author(s):  
Evgeniya V. Goloveshkina ◽  
Leonid M. Zubov

The concept of a spherically symmetric second-rank tensor field is formulated. A general representation of such a tensor field is derived. Results related to tensor analysis of spherically symmetric fields and their geometric properties are presented. Using these results, a formulation of the spherically symmetric problem of the nonlinear theory of dislocations is given. For an isotropic nonlinear elastic material with an arbitrary spherically symmetric distribution of dislocations, this problem is reduced to a nonlinear boundary value problem for a system of ordinary differential equations. In the case of an incompressible isotropic material and a spherically symmetric distribution of screw dislocations in the radial direction, an exact analytical solution is found for the equilibrium of a hollow sphere loaded from the outside and from the inside by hydrostatic pressures. This solution is suitable for any models of an isotropic incompressible body, i. e., universal in the specified class of materials. Based on the obtained solution, numerical calculations on the effect of dislocations on the stress state of an elastic hollow sphere at large deformations are carried out.


1959 ◽  
Vol 15 ◽  
pp. 219-223
Author(s):  
Minoru Kurita

In this paper we investigate indices of umbilics of a closed surface in the euclidean space. Most part of the discussion is concerned with a symmetric tensor field of degree 2, or rather a direction field, on a Riemannian manifold of dimension 2.


1972 ◽  
Vol 8 (2) ◽  
pp. 319-330 ◽  
Author(s):  
A. Maheshwari
Keyword(s):  

1997 ◽  
Vol 12 (02) ◽  
pp. 111-119 ◽  
Author(s):  
Shinichi Deguchi ◽  
Tadahito Nakajima

We consider a Yang–Mills theory in loop space with the affine gauge group. From this theory, we derive a local field theory with Yang–Mills fields and Abelian antisymmetric and symmetric tensor fields of the second rank. The Chapline–Manton coupling, i.e. coupling of Yang–Mills fields and a second-rank antisymmetric tensor field via the Chern–Simons three-form is obtained systematically.


1975 ◽  
Vol 13 (4) ◽  
pp. 145-148 ◽  
Author(s):  
G. Cavalleri ◽  
G. Spinelli

Sign in / Sign up

Export Citation Format

Share Document