scholarly journals Dynamic behavior of mass measurement system using load-cell (2nd report) -Effect of partial load distribution-

2018 ◽  
Vol 1065 ◽  
pp. 042048
Author(s):  
Kazuki Yamani ◽  
Yuji Yamakawa ◽  
Takanori Yamazaki
2013 ◽  
Vol 24 ◽  
pp. 1360002
Author(s):  
RUILIN ZHONG ◽  
JIAN WANG ◽  
CHANGQING CAI ◽  
HONG YAO ◽  
JIN'AN DING ◽  
...  

Mass measurement is influenced by air pressure, temperature, humidity and other facts. In order to reduce the influence, mass laboratory of National Institute of Metrology, China has developed an air pressure controlled mass measurement system. In this system, an automatic mass comparator is installed in an airtight chamber. The Chamber is equipped with a pressure controller and associate valves, thus the air pressure can be changed and stabilized to the pre-set value, the preferred pressure range is from 200 hPa to 1100 hPa. In order to keep the environment inside the chamber stable, the display and control part of the mass comparator are moved outside the chamber, and connected to the mass comparator by feed-throughs. Also a lifting device is designed for this system which can easily lift up the upper part of the chamber, thus weights can be easily put inside the mass comparator. The whole system is put on a marble platform, and the temperature and humidity of the laboratory is very stable. The temperature, humidity, and carbon dioxide content inside the chamber are measured in real time and can be used to get air density. Mass measurement cycle from 1100 hPa to 200 hPa and back to 1100 hPa shows the effective of the system.


2011 ◽  
Vol 301-303 ◽  
pp. 147-152
Author(s):  
Xiu Wu Sui ◽  
Xiao Guang Qi ◽  
Da Peng Li ◽  
Guo Xiong Zhang ◽  
Yu Ming Fan

The paper presents the measurement system of the air plane fuel mass consisting of cylinder shell resonating density meter and double cylinders capacitance level meter. The finite element analysis method of ANSYS10.0 is used to analyze the performance of cylinder shell resonator density meter and double cylinders capacitance fuel level sensor. On the base of simulation, the cylinder shell is 45mm in length, 9mm in radius, and 0.08mm in thickness, the material is 3J53; the double cylinders capacitance is 8mm in inside diameter, 23.6mm in outside diameter, and 550 mm in length. The experiments show the uncertainty of cylinder shell resonating density meter is only 0.12%, the uncertainty of double cylinders capacitance level meter is only 0.2%, and the uncertainty of the fuel mass measurement system is 0.4%.


Author(s):  
Takeshi Mizuno

Abstract A mass measurement system which uses a dynamic vibration absorber as measuring device is developed. It can measure mass even under weightless conditions like in space stations. In this system, an object to be measured is fixed to a rotating table (rotor) at a distance from the rotational axis. Since it makes the rotor unbalanced, a centrifugal force causes the supporting structure to vibrate during rotation. A dynamic vibration absorber attached to the structure is tuned or controlled to cancel the excitation force. When the structure does not vibrate, the amplitude of motion of the auxiliary mass equals the ratio of the amount of unbalance to the auxiliary mass. Therefore, the mass of the object is determined from the motion of the auxiliary mass. According to the measurement principles, the vibration of the supporting structure must be eliminated. A servocompensator with the performance of automatic frequency tracking is applied to reduce the vibration. Experimental results demonstrate that mass can be measured accurately with the developed measurement system.


1976 ◽  
Vol 19 (132) ◽  
pp. 690-698 ◽  
Author(s):  
Teruaki HIDAKA ◽  
Yoshio TERAUCHI

2008 ◽  
Vol 2 (1) ◽  
pp. 188-196 ◽  
Author(s):  
Takeshi MIZUNO ◽  
Takahiro ADACHI ◽  
Masaya TAKASAKI ◽  
Yuji ISHINO

Author(s):  
Marcio Yamamoto ◽  
Tomo Fujiwara ◽  
Shigeo Kanada ◽  
Masao Ono ◽  
Satoru Takano ◽  
...  

Abstract For the exploitation of seafloor massive sulfides, we have investigated the dynamic behavior of the jumper, a piece of flexible pipe that connects the seafloor mining tool to the subsea slurry pump. In this article, we present the results of the experiment using a 1/5 reduced-scale model of the jumper. This experiment was carried out in Deep-Sea Basin. During the experiment, a slurry fluid was conveyed throughout the jumper’s model. In addition, an oscillator generated harmonic motion on the top end of the model. In terms of instrumentation, we installed load cells on the top and bottom ends of the model and a 3D visual measurement system tracked the motion of measurement stations attached to the model. We present the experimental results measured by the 3D visual measurement system, loads cells, and differential pressure gauges in the cases where a vertically forced oscillation is imposed on the top of the jumper. In this experiment, we could observe the effects of slurry on the jumper reduced-scale model. Since the slurry has a larger density than the single liquid phase, the slurry flow changed, as expected, the static shape of the jumper compared to a jumper conveying only water. The vertical top force average and differential pressure average increase with the volume concentration of solid, while their amplitudes increase quadratically with the forced oscillation frequency.


Sign in / Sign up

Export Citation Format

Share Document