scholarly journals Cross-domain few-shot classification through feature confusion

2020 ◽  
Vol 1550 ◽  
pp. 032025
Author(s):  
Guoxiang Ye ◽  
Yan Xia ◽  
Zhangwei Feng ◽  
Feng Tian
Author(s):  
Zhewei Weng ◽  
Chunyan Feng ◽  
Tiankui Zhang ◽  
Yutao Zhu ◽  
Zeren Chen

Author(s):  
Jiamei Sun ◽  
Sebastian Lapuschkin ◽  
Wojciech Samek ◽  
Yunqing Zhao ◽  
Ngai-Man Cheung ◽  
...  

Author(s):  
Haoqing Wang ◽  
Zhi-Hong Deng

Few-shot classification aims to recognize unseen classes with few labeled samples from each class. Many meta-learning models for few-shot classification elaborately design various task-shared inductive bias (meta-knowledge) to solve such tasks, and achieve impressive performance. However, when there exists the domain shift between the training tasks and the test tasks, the obtained inductive bias fails to generalize across domains, which degrades the performance of the meta-learning models. In this work, we aim to improve the robustness of the inductive bias through task augmentation. Concretely, we consider the worst-case problem around the source task distribution, and propose the adversarial task augmentation method which can generate the inductive bias-adaptive 'challenging' tasks. Our method can be used as a simple plug-and-play module for various meta-learning models, and improve their cross-domain generalization capability. We conduct extensive experiments under the cross-domain setting, using nine few-shot classification datasets: mini-ImageNet, CUB, Cars, Places, Plantae, CropDiseases, EuroSAT, ISIC and ChestX. Experimental results show that our method can effectively improve the few-shot classification performance of the meta-learning models under domain shift, and outperforms the existing works. Our code is available at https://github.com/Haoqing-Wang/CDFSL-ATA.


Author(s):  
Igor' Latyshov ◽  
Fedor Samuylenko

In this research, there was considered a challenge of constructing a system of scientific knowledge of the shot conditions in judicial ballistics. It was observed that there are underlying factors that are intended to ensureits [scientific knowledge] consistency: identification of the list of shot conditions, which require consideration when solving expert-level research tasks on weapons, cartridges and traces of their action; determination of the communication systems in the course of objects’ interaction, which present the result of exposure to the conditions of the shot; classification of the shot conditions based on the grounds significant for solving scientific and practical problems. The article contains the characteristics of a constructive, functional factor (condition) of weapons and cartridges influence, environmental and fire factors, the structure of the target and its physical properties, situational and spatial factors, and projectile energy characteristics. Highlighted are the forms of connections formed in the course of objects’ interaction, proposed are the author’s classifications of forensically significant shooting conditions with them being divided on the basis of the following criteria: production from the object of interaction, production from a natural phenomenon, production method, results weapon operation and utilization, duration of exposure, type of structural connections between interaction objects, number of conditions that apply when firing and the forming traces.


Sign in / Sign up

Export Citation Format

Share Document