scholarly journals Thermal poling of glasses to fabricate masks for ion exchange

2020 ◽  
Vol 1695 ◽  
pp. 012107
Author(s):  
E Babich ◽  
I Reduto ◽  
A Redkov ◽  
I Reshetov ◽  
V Zhurikhina ◽  
...  
Keyword(s):  
2016 ◽  
Vol 186 ◽  
pp. 107-121 ◽  
Author(s):  
Semen Chervinskii ◽  
Igor Reduto ◽  
Alexander Kamenskii ◽  
Ivan S. Mukhin ◽  
Andrey A. Lipovskii

The paper is dedicated to the recently developed by the authors technique of silver nanoisland growth, allowing self-arrangement of 2D-patterns of nanoislands. The technique employs silver out-diffusion from ion-exchanged glass in the course of annealing in hydrogen. To modify the silver ion distribution in the exchanged soda-lime glass we included the thermal poling of the ion-exchanged glass with a profiled electrode as an intermediate stage of the process. The resulting consequence consists of three steps: (i) during the ion exchange of the glass in the AgxNa1−xNO3(x= 0.01–0.15) melt we enrich the subsurface layer of the glass with silver ions; (ii) under the thermal poling, the electric field displaces these ions deeper into the glass under the 2D profiled anodic electrode, the displacement is smaller under the hollows in the electrode where the intensity of the field is minimal; (iii) annealing in a reducing atmosphere of hydrogen results in silver out-diffusion only in the regions corresponding to the electrode hollows, as a result silver forms nanoislands following the shape of the electrode. Varying the electrode and mode of processing allows governing the nanoisland size distribution and self-arrangement of the isolated single nanoislands, pairs, triples or groups of several nanoislands—so-called plasmonic molecules.


2020 ◽  
Vol 1695 ◽  
pp. 012186
Author(s):  
D V Raskhodchikov ◽  
E S Babich ◽  
V. P. Kaasik ◽  
I V Reshetov ◽  
A A Lipovskii

Author(s):  
Ann M. Thomas ◽  
Virginia Shemeley

Those samples which swell rapidly when exposed to water are, at best, difficult to section for transmission electron microscopy. Some materials literally burst out of the embedding block with the first pass by the knife, and even the most rapid cutting cycle produces sections of limited value. Many ion exchange resins swell in water; some undergo irreversible structural changes when dried. We developed our embedding procedure to handle this type of sample, but it should be applicable to many materials that present similar sectioning difficulties.The purpose of our embedding procedure is to build up a cross-linking network throughout the sample, while it is in a water swollen state. Our procedure was suggested to us by the work of Rosenberg, where he mentioned the formation of a tridimensional structure by the polymerization of the GMA biproduct, triglycol dimethacrylate.


1988 ◽  
Vol 49 (C8) ◽  
pp. C8-937-C8-938
Author(s):  
O. Kalogirou ◽  
A. C. Stergiou ◽  
D. Samaras ◽  
S. Nicolopoulos ◽  
A. Bekka ◽  
...  

Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
AA Abdelgadir ◽  
L Boudesocque-Delaye ◽  
I Thery-Koné ◽  
A Gueiffier ◽  
EM Ahmed ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document