scholarly journals Network Representation Learning Algorithm Combined with Node Text Information

2021 ◽  
Vol 1769 (1) ◽  
pp. 012054
Author(s):  
Rui Wang ◽  
Yu Liu ◽  
Jiawang Chen
IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 222956-222965
Author(s):  
Dong Liu ◽  
Qinpeng Li ◽  
Yan Ru ◽  
Jun Zhang

Mathematics ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 460
Author(s):  
Zhonglin Ye ◽  
Haixing Zhao ◽  
Ke Zhang ◽  
Yu Zhu ◽  
Zhaoyang Wang

Representation learning aims to encode the relationships of research objects into low-dimensional, compressible, and distributed representation vectors. The purpose of network representation learning is to learn the structural relationships between network vertices. Knowledge representation learning is oriented to model the entities and relationships in knowledge bases. In this paper, we first introduce the idea of knowledge representation learning into network representation learning, namely, we propose a new approach to model the vertex triplet relationships based on DeepWalk without TransE. Consequently, we propose an optimized network representation learning algorithm using multi-relational data, MRNR, which introduces the multi-relational data between vertices into the procedures of network representation learning. Importantly, we adopted a kind of higher order transformation strategy to optimize the learnt network representation vectors. The purpose of MRNR is that multi-relational data (triplets) can effectively guide and constrain the procedures of network representation learning. The experimental results demonstrate that the proposed MRNR can learn the discriminative network representations, which show better performance on network classification, visualization, and case study tasks compared to the proposed baseline algorithms in this paper.


Algorithms ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 62 ◽  
Author(s):  
Zhonglin Ye ◽  
Haixing Zhao ◽  
Ke Zhang ◽  
Yu Zhu

Network representation learning is a key research field in network data mining. In this paper, we propose a novel multi-view network representation algorithm (MVNR), which embeds multi-scale relations of network vertices into the low dimensional representation space. In contrast to existing approaches, MVNR explicitly encodes higher order information using k-step networks. In addition, we introduce the matrix forest index as a kind of network feature, which can be applied to balance the representation weights of different network views. We also research the relevance amongst MVNR and several excellent research achievements, including DeepWalk, node2vec and GraRep and so forth. We conduct our experiment on several real-world citation datasets and demonstrate that MVNR outperforms some new approaches using neural matrix factorization. Specifically, we demonstrate the efficiency of MVNR on network classification, visualization and link prediction tasks.


2020 ◽  
Vol 15 (7) ◽  
pp. 750-757
Author(s):  
Jihong Wang ◽  
Yue Shi ◽  
Xiaodan Wang ◽  
Huiyou Chang

Background: At present, using computer methods to predict drug-target interactions (DTIs) is a very important step in the discovery of new drugs and drug relocation processes. The potential DTIs identified by machine learning methods can provide guidance in biochemical or clinical experiments. Objective: The goal of this article is to combine the latest network representation learning methods for drug-target prediction research, improve model prediction capabilities, and promote new drug development. Methods: We use large-scale information network embedding (LINE) method to extract network topology features of drugs, targets, diseases, etc., integrate features obtained from heterogeneous networks, construct binary classification samples, and use random forest (RF) method to predict DTIs. Results: The experiments in this paper compare the common classifiers of RF, LR, and SVM, as well as the typical network representation learning methods of LINE, Node2Vec, and DeepWalk. It can be seen that the combined method LINE-RF achieves the best results, reaching an AUC of 0.9349 and an AUPR of 0.9016. Conclusion: The learning method based on LINE network can effectively learn drugs, targets, diseases and other hidden features from the network topology. The combination of features learned through multiple networks can enhance the expression ability. RF is an effective method of supervised learning. Therefore, the Line-RF combination method is a widely applicable method.


2021 ◽  
Author(s):  
Wen Zhang ◽  
B. Blair Braden ◽  
Gustavo Miranda ◽  
Kai Shu ◽  
Suhang Wang ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Ke Li ◽  
Sang-Bing Tsai

Aiming at the problem of 5G multimedia heterogeneous multimodal network representation learning, this paper proposes a collaborative multimodal heterogeneous network representation learning method based on attention mechanism. This method learns different representations for nodes based on heterogeneous network structure information and multimodal content and designs an attention mechanism to learn weights for different representations to fuse them to obtain robust node representations. Combining the general process of exploring the college physical education model and the characteristics of the multimedia network classroom environment, this article constructs the process of exploring the college physical education teaching model of the multimedia network classroom. Through the research and practice of the inquiry college physical education teaching model in the multimedia network classroom, it is verified that the implementation of the inquiry college physical education teaching in the multimedia network classroom can effectively influence and increase the students’ interest in learning and stimulate the students’ inner learning motivation. Through the guidance and training of teachers, a variety of disciplines can be used to carry out college physical education in multimedia network classrooms, so that the integration between courses can be truly realized, with the aim that all courses can share the excellent results brought by the development of modern education technology. More educators understand, accept, and participate in the practice of college physical education based on multimedia network classrooms and better serve the education of college physical education. The construction of the college physical education evaluation system should be combined with the characteristics of the 5G multimedia network era. The evaluation process includes data collection, data analysis, result output, and result feedback. Each link is an indispensable part of the college physical education evaluation process. Based on the relevant knowledge of the 5G multimedia network, the evaluation indicators determined in this study can basically reflect the various elements of the physical education process in colleges and universities. The distribution of index weight coefficients is more scientific and reasonable. Compared with the current system, the college physical education evaluation system constructed by exploration has a certain degree of objectivity and scientificity. Therefore, it is feasible to apply the 5G multimedia network to the evaluation of college physical education.


Sign in / Sign up

Export Citation Format

Share Document