scholarly journals Dynamic Fusion of Electromyographic and Electroencephalographic Data towards Use in Robotic Prosthesis Control

2021 ◽  
Vol 1828 (1) ◽  
pp. 012056
Author(s):  
Michael Pritchard ◽  
Abraham Itzhak Weinberg ◽  
John A R Williams ◽  
Felipe Campelo ◽  
Harry Goldingay ◽  
...  
Author(s):  
G. A. Ribeiro ◽  
M. Rastgaar

The field of control of powered lower-leg prostheses has advanced due to the improvements in sensors and computational power. Much effort has been done to improve the capabilities of prostheses, such as mimicking the stiffness, weight, and mobility of a human ankle-foot [1] and autonomously commanding the robotic prosthesis for gait [2].


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Rob Bogue

Purpose This paper aims to provide details of recent advances in robotic prostheses with the emphasis on the control and sensing technologies. Design/methodology/approach Following a short introduction, this paper first discusses the main robotic prosthesis control strategies. It then provides details of recent research and developments using non-invasive and invasive brain–computer interfaces (BCIs). These are followed by examples of studies that seek to confer robotic prostheses with sensory feedback. Finally, brief conclusions are drawn. Findings A significant body of research is underway involving electromyographic and BCI technologies, often in combination with advanced data processing and analysis schemes. This has the potential to yield robotic prostheses with advanced capabilities such as greater dexterity and sensory feedback. Originality/value This illustrates how electromyographic, BCI, signal processing and sensor technologies are being used to create robotic prostheses with enhanced functionality.


2005 ◽  
Vol 21 (07) ◽  
Author(s):  
Hakim Said ◽  
Todd Kuiken ◽  
Robert Lipzchutz ◽  
Laura Miller ◽  
Gregory Dumanian

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eric J. Earley ◽  
Reva E. Johnson ◽  
Jonathon W. Sensinger ◽  
Levi J. Hargrove

AbstractAccurate control of human limbs involves both feedforward and feedback signals. For prosthetic arms, feedforward control is commonly accomplished by recording myoelectric signals from the residual limb to predict the user’s intent, but augmented feedback signals are not explicitly provided in commercial devices. Previous studies have demonstrated inconsistent results when artificial feedback was provided in the presence of vision; some studies showed benefits, while others did not. We hypothesized that negligible benefits in past studies may have been due to artificial feedback with low precision compared to vision, which results in heavy reliance on vision during reaching tasks. Furthermore, we anticipated more reliable benefits from artificial feedback when providing information that vision estimates with high uncertainty (e.g. joint speed). In this study, we test an artificial sensory feedback system providing joint speed information and how it impacts performance and adaptation during a hybrid positional-and-myoelectric ballistic reaching task. We found that overall reaching errors were reduced after perturbed control, but did not significantly improve steady-state reaches. Furthermore, we found that feedback about the joint speed of the myoelectric prosthesis control improved the adaptation rate of biological limb movements, which may have resulted from high prosthesis control noise and strategic overreaching with the positional control and underreaching with the myoelectric control. These results provide insights into the relevant factors influencing the improvements conferred by artificial sensory feedback.


Author(s):  
Michael D. Paskett ◽  
Mark R. Brinton ◽  
Taylor C. Hansen ◽  
Jacob A. George ◽  
Tyler S. Davis ◽  
...  

Abstract Background Advanced prostheses can restore function and improve quality of life for individuals with amputations. Unfortunately, most commercial control strategies do not fully utilize the rich control information from residual nerves and musculature. Continuous decoders can provide more intuitive prosthesis control using multi-channel neural or electromyographic recordings. Three components influence continuous decoder performance: the data used to train the algorithm, the algorithm, and smoothing filters on the algorithm’s output. Individual groups often focus on a single decoder, so very few studies compare different decoders using otherwise similar experimental conditions. Methods We completed a two-phase, head-to-head comparison of 12 continuous decoders using activities of daily living. In phase one, we compared two training types and a smoothing filter with three algorithms (modified Kalman filter, multi-layer perceptron, and convolutional neural network) in a clothespin relocation task. We compared training types that included only individual digit and wrist movements vs. combination movements (e.g., simultaneous grasp and wrist flexion). We also compared raw vs. nonlinearly smoothed algorithm outputs. In phase two, we compared the three algorithms in fragile egg, zipping, pouring, and folding tasks using the combination training and smoothing found beneficial in phase one. In both phases, we collected objective, performance-based (e.g., success rate), and subjective, user-focused (e.g., preference) measures. Results Phase one showed that combination training improved prosthesis control accuracy and speed, and that the nonlinear smoothing improved accuracy but generally reduced speed. Phase one importantly showed simultaneous movements were used in the task, and that the modified Kalman filter and multi-layer perceptron predicted more simultaneous movements than the convolutional neural network. In phase two, user-focused metrics favored the convolutional neural network and modified Kalman filter, whereas performance-based metrics were generally similar among all algorithms. Conclusions These results confirm that state-of-the-art algorithms, whether linear or nonlinear in nature, functionally benefit from training on more complex data and from output smoothing. These studies will be used to select a decoder for a long-term take-home trial with implanted neuromyoelectric devices. Overall, clinical considerations may favor the mKF as it is similar in performance, faster to train, and computationally less expensive than neural networks.


2020 ◽  
Vol 14 ◽  
Author(s):  
Janne M. Hahne ◽  
Meike A. Wilke ◽  
Mario Koppe ◽  
Dario Farina ◽  
Arndt F. Schilling

2007 ◽  
Vol 28 (4) ◽  
pp. 397-413 ◽  
Author(s):  
Ping Zhou ◽  
Blair Lock ◽  
Todd A Kuiken

Sign in / Sign up

Export Citation Format

Share Document