scholarly journals Spatial analysis of return period based copula on extreme rainfall data in South Sulawesi

2021 ◽  
Vol 1842 (1) ◽  
pp. 012050
Author(s):  
Reski Wahyu Yanti ◽  
Anwar Fitrianto ◽  
Muhammad Nur Aidi
2021 ◽  
Vol 884 (1) ◽  
pp. 012018
Author(s):  
I G Tunas ◽  
H Azikin ◽  
G M Oka

Abstract Extreme rainfall is the main factor triggering flooding in various regions of the world including Indonesia. The increase in intensity and duration of current extreme rainfall is predicted as a result of global climate change. This paper aims to analyze the impact of extreme rainfall to the peak discharge of flood hydrographs at a watershed outlet in Palu, Sulawesi, Indonesia. Maximum daily rainfall data for the period 1990-1999 recorded at the Palu Meteorological Station, Central Sulawesi were selected using the Annual Maximum Series Method, and grouped into two types. Type I is the maximum daily rainfall data with extreme events and Type II is the maximum daily rainfall data without extreme events. Frequency analysis was applied to the two data groups using the best distribution method of: Normal, Normal Log, Pearson III Log, and Gumbel to obtain the design rainfall of each data group. In the next stage, the design rainfall transformation into a flood hydrograph is performed using the Nakayasu Synthetic Unit Hydrograph based on a number of return periods in one of the rivers flowing into Palu Bay, namely the Poboya River. The analysis results show that the design rainfall graphs with both extreme rainfall and without extreme rainfall are identical at the low return period and divergent at the high return period with a difference of up to 21.6% at the 1000-year return period. Correspondingly, extreme rainfall has a greater impact at the peak of the flood hydrograph with increasing return periods ranging from -1.28% to 26.81% over the entire return period.


Author(s):  
Seung Kyu Lee ◽  
Truong An Dang

Purpose The purpose of this study is to evaluate the rainfall intensities and their limits for durations from 0.25 to 8 h with return periods from 2 to 100 years for Ca Mau City in Vietnam. Design/methodology/approach First, the quality of the historical rainfall data series in 44 years (1975–2018) at Ca Mau station was assessed using the standard normal homogeneity test and the Pettitt test. Second, the appraised rainfall data series are used to establish the rainfall intensity-duration-frequency curve for the study area. Findings Based on the findings, a two-year return period, the extreme rainfall intensities (ERIs) ranged from 9.1 mm/h for 8 h rainstorms to 91.2 mm/h for 0.25 h. At a 100-year return period, the ERIs ranged from 18.4 mm/h for 8 h rainstorms to 185.8 mm/h for 0.25 h. The results also show that the narrowest uncertainty level between the lower and upper limits recorded 1.6 mm at 8 h for the two-year return period while the widest range is at 42.5 mm at 0.25 h for the 100-year return period. In general, the possibility of high-intensity rainfall values compared to the extreme rainfall intensities is approximately 2.0% at the 100-year return period. Originality/value The results of the rainfall IDF curves can provide useful information for policymakers to make the right decisions in controlling and minimizing flooding in the study area.


GANEC SWARA ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 126
Author(s):  
MUHAMAD YAMIN

This study aims to analyze the parameters that influence the Snyder synthetic unit hydrograph method. The study was conducted on 11 watersheds in South Sulawesi Province, 8 watersheds for modeling and 3 other watersheds for reliability testing (model verification).     With rainfall data, the discharge data and watershed characteristics obtained from each watershed were analyzed for parameters that affected the hydrograph breakdown of the Snyder HSS method. Then compared to the hydrograph of the observation unit which was analyzed by the Collins method.     After calibration was done with the NASH criteria obtained Peak Time (Tp) = 97.996%; Peak Discharge (Qp) = 98.331% and Basic Time (Tb) = 99.700%. The curved delineation of the hydrograph uses the auxiliary point W, which gives the result of volume deviation, namely: 7.980%, 9.227%; 6.855%; 4.966%; 10.972% and 9.843% are relatively small when compared to the model using Alexejeyev Arch with deviations: 22.362%; 29.991%; 26,319%; 19.602%; 29,786% and 17,633%.


2013 ◽  
Vol 63 (2) ◽  
Author(s):  
Suhaila Jamaludin ◽  
Hanisah Suhaimi

This study presents the spatial analysis of the rainfall data over Peninsular Malaysia. 70 rainfall stations were utilized in this study. Due to the limited number of rainfall stations, the Ordinary Kriging method which is one of the techniques in Spatial Interpolation was used to estimate the values of the rainfall data and to map their spatial distribution. This spatial analysis was analysed according to the two indices that describe the wet events and another two indices that characterize dry conditions. Large areas at the east experienced high rainfall intensity compared to the areas in the west, northwest and southwest. The small value that has been obtained in Aridity Intensity Index (AII) reflects that the high amount of rainfall in the eastern areas is not contributed by low-intensity events (less than 25th percentile). In terms of number of consecutive dry days, Northwestern areas in Peninsular Malaysia recorded the highest value. This finding explains the occurrence of a large number of floods and soil erosions in the eastern areas.


2019 ◽  
Vol 1341 ◽  
pp. 092017
Author(s):  
A Rahim ◽  
B Bakri ◽  
Anisa ◽  
A Mutholib ◽  
A Haerunnisa

Author(s):  
Abdullah Al Mamun ◽  
Md Niaz Farhat Rahman ◽  
Md Abdullah Aziz ◽  
Md Abdul Qayum ◽  
Md Ismail Hossain ◽  
...  

2013 ◽  
Vol 63 (2) ◽  
Author(s):  
Zakaria, R. ◽  
Howlett, P. G. ◽  
Piantadosi, J. ◽  
Boland, J. W. ◽  
Moslim, N. H.

One of the major difficulties in simulating rainfall is the need to accurately represent rainfall accumulations. An accurate simulation of monthly rainfall should also provide an accurate simulation of yearly rainfall by summing the monthly totals. A major problem in this regard is that rainfall distributions for successive months may not be independent. Thus the rainfall accumulation problem must be represented as the summation of dependent random variables. This study is aimed to show if the statistical parameters for several stations within a particular catchment is known, then a weighted sum is used to determine a rainfall model for the entire local catchment. A spatial analysis for the sum of rainfall volumes from four selected meteorological stations within the same region using the monthly rainfall data is conducted. The sum of n correlated gamma variables is used to model the sum of monthly rainfall totals from four stations when there is significant correlation between the stations.


2019 ◽  
Vol 14 (4) ◽  
pp. 044033 ◽  
Author(s):  
Savitri Kumari ◽  
Karsten Haustein ◽  
Hammad Javid ◽  
Chad Burton ◽  
Myles R Allen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document