scholarly journals Spatial Interpolation on Rainfall Data over Peninsular Malaysia Using Ordinary Kriging

2013 ◽  
Vol 63 (2) ◽  
Author(s):  
Suhaila Jamaludin ◽  
Hanisah Suhaimi

This study presents the spatial analysis of the rainfall data over Peninsular Malaysia. 70 rainfall stations were utilized in this study. Due to the limited number of rainfall stations, the Ordinary Kriging method which is one of the techniques in Spatial Interpolation was used to estimate the values of the rainfall data and to map their spatial distribution. This spatial analysis was analysed according to the two indices that describe the wet events and another two indices that characterize dry conditions. Large areas at the east experienced high rainfall intensity compared to the areas in the west, northwest and southwest. The small value that has been obtained in Aridity Intensity Index (AII) reflects that the high amount of rainfall in the eastern areas is not contributed by low-intensity events (less than 25th percentile). In terms of number of consecutive dry days, Northwestern areas in Peninsular Malaysia recorded the highest value. This finding explains the occurrence of a large number of floods and soil erosions in the eastern areas.

2018 ◽  
Vol 34 ◽  
pp. 02048
Author(s):  
Zulkarnain Hassan ◽  
Ahmad Haidir ◽  
Farah Naemah Mohd Saad ◽  
Afizah Ayob ◽  
Mustaqqim Abdul Rahim ◽  
...  

The inconsistency in inter-seasonal rainfall due to climate change will cause a different pattern in the rainfall characteristics and distribution. Peninsular Malaysia is not an exception for this inconsistency, in which it is resulting extreme events such as flood and water scarcity. This study evaluates the seasonal patterns in rainfall indices such as total amount of rainfall, the frequency of wet days, rainfall intensity, extreme frequency, and extreme intensity in Peninsular Malaysia. 40 years (1975-2015) data records have been interpolated using Inverse Distance Weighted method. The results show that the formation of rainfall characteristics are significance during the Northeast monsoon (NEM), as compared to Southwest monsoon (SWM). Also, there is a high rainfall intensity and frequency related to extreme over eastern coasts of Peninsula during the NEM season.


Author(s):  
NI MADE SUMA FRIDAYANI ◽  
I PUTU EKA NILA KENCANA ◽  
KOMANG GDE SUKARSA

Kriging as optimal spatial interpolation can produce less precise predictive value if there are outliers among the data. Outliers defined as extreme observation value of the other observation values that may be caused by faulty record keeping, improper calibration equipment or other posibbilities. Development of Ordinary Kriging method is Robust Kriging which transforms weight of clasic variogram thus become variogram that robust to outlier. The spatial data that used in this research is the spatial data that contains outliers and meet the assumptions of Ordinary Kriging. The analysis showed that the estimation value of Ordinary Kriging and Robust Kriging method is not much different in terms of Mean Absolute Deviation values which generated by both methods. An increase value of Mean Absolute Deviation on Robust Kriging estimation does not indicate that the Ordinary Kriging method is more precise than Robust Kriging method in the rainfall estimates of Amlapura control point remind that Robust Kriging does not eliminate the data of observation such as the Ordinary Kriging method. In general, Ordinary Kriging and Robust Kriging method can estimate the rainfall value of Amlapura control point quite well although it is not able to cover the changes in rainfall value that occurs due to the behavior geographic data.


2015 ◽  
Vol 4 (1) ◽  
pp. 26
Author(s):  
PUTU MIRAH PURNAMA D. ◽  
KOMANG GDE SUKARSA ◽  
KOMANG DHARMAWAN

Spatial data is data that is presented in the geographic of an object, related to the location, shape and relationship of the earth in space. One of example of spatial data is rainfall. To determine the value of rainfall in an area, built to predict rain post information regarding rainfall. Spatial interpolation is used to estimate rainfall by collecting rainfall values held rain heading around. Assessment methods used in the estimate the rainfall in the Karangasem district is ordinary kriging using isotropic semivariogram that takes into account height on spatial data. Isotropic semivariogram which only takes into account the distance alone. Ordinary kriging method using isotropic semivariogram that takes into account height  value estimated rainfall is much different to the values at the control points Amlapura and Besakih. Interpolation on 3D data are not suitable for use on ordinary kriging method, grouping should be done at the data into a few weeks to application of ordinary kriging interpolation method using anisotropic semivariogram on 3D data.


2021 ◽  
Vol 1863 (1) ◽  
pp. 012049
Author(s):  
Mohd Khaidir Mohamed Salleh ◽  
Noor Fadhilah Ahmad Radib ◽  
Nor Azrita Mohd Amin

2021 ◽  
Author(s):  
Derbi W. Fitri ◽  
Nurul Afifah ◽  
Siti M. D. Anggarani ◽  
Nur Chamidah

2011 ◽  
Vol 15 (7) ◽  
pp. 2259-2274 ◽  
Author(s):  
S. Ly ◽  
C. Charles ◽  
A. Degré

Abstract. Spatial interpolation of precipitation data is of great importance for hydrological modelling. Geostatistical methods (kriging) are widely applied in spatial interpolation from point measurement to continuous surfaces. The first step in kriging computation is the semi-variogram modelling which usually used only one variogram model for all-moment data. The objective of this paper was to develop different algorithms of spatial interpolation for daily rainfall on 1 km2 regular grids in the catchment area and to compare the results of geostatistical and deterministic approaches. This study leaned on 30-yr daily rainfall data of 70 raingages in the hilly landscape of the Ourthe and Ambleve catchments in Belgium (2908 km2). This area lies between 35 and 693 m in elevation and consists of river networks, which are tributaries of the Meuse River. For geostatistical algorithms, seven semi-variogram models (logarithmic, power, exponential, Gaussian, rational quadratic, spherical and penta-spherical) were fitted to daily sample semi-variogram on a daily basis. These seven variogram models were also adopted to avoid negative interpolated rainfall. The elevation, extracted from a digital elevation model, was incorporated into multivariate geostatistics. Seven validation raingages and cross validation were used to compare the interpolation performance of these algorithms applied to different densities of raingages. We found that between the seven variogram models used, the Gaussian model was the most frequently best fit. Using seven variogram models can avoid negative daily rainfall in ordinary kriging. The negative estimates of kriging were observed for convective more than stratiform rain. The performance of the different methods varied slightly according to the density of raingages, particularly between 8 and 70 raingages but it was much different for interpolation using 4 raingages. Spatial interpolation with the geostatistical and Inverse Distance Weighting (IDW) algorithms outperformed considerably the interpolation with the Thiessen polygon, commonly used in various hydrological models. Integrating elevation into Kriging with an External Drift (KED) and Ordinary Cokriging (OCK) did not improve the interpolation accuracy for daily rainfall. Ordinary Kriging (ORK) and IDW were considered to be the best methods, as they provided smallest RMSE value for nearly all cases. Care should be taken in applying UNK and KED when interpolating daily rainfall with very few neighbourhood sample points. These recommendations complement the results reported in the literature. ORK, UNK and KED using only spherical model offered a slightly better result whereas OCK using seven variogram models achieved better result.


2012 ◽  
Vol 3 ◽  
pp. 17-23 ◽  
Author(s):  
Rosmina A. Bustami ◽  
Nor Azalina Rosli ◽  
Jethro Henry Adam ◽  
Kuan Pei Li

 In the process of a design rainfall, information on rainfall duration, average rainfall intensity and temporal rainfall pattern is important. This study focuses on developing a temporal rainfall pattern for the Southern region of Sarawak since temporal pattern for Sarawak is yet to be available in the Malaysian Urban Storm Water Management Manual (MSMA), which publishes temporal pattern for design storms only for Peninsular Malaysia. The recommended technique by the Australian Rainfall and Runoff (AR&R) known as the ‘Average Variability Method’ and method in Hydrological Procedure No.1-1982 are used to derive design rainfall temporal pattern for the study. Rainfall data of 5 minutes interval from year 1998 to year 2006 for 7 selected rainfall stations in the selected region is obtained from Department of Irrigation and Drainage (DID). The temporal rainfall patterns developed are for 10 minutes,15 minutes, 30 minutes, 60 minutes, 120 minutes, 180 minutes and 360 minutes duration. The results show that Southern region of Sarawak has an exclusive rainfall pattern, which is different from the pattern developed for Peninsular Malaysia.


Sign in / Sign up

Export Citation Format

Share Document