scholarly journals A theoretical estimate on the probability of the formation of a self-avoiding copolymer macromolecule

2021 ◽  
Vol 1849 (1) ◽  
pp. 012027
Author(s):  
Pramod Kumar Mishra
Keyword(s):  
Entropy ◽  
2018 ◽  
Vol 20 (11) ◽  
pp. 851 ◽  
Author(s):  
Nasir Shehzad ◽  
Ahmed Zeeshan ◽  
Rahmat Ellahi ◽  
Saman Rashidi

In this paper, an analytical study of internal energy losses for the non-Darcy Poiseuille flow of silver-water nanofluid due to entropy generation in porous media is investigated. Spherical-shaped silver (Ag) nanosize particles with volume fraction 0.3%, 0.6%, and 0.9% are utilized. Four illustrative models are considered: (i) heat transfer irreversibility (HTI), (ii) fluid friction irreversibility (FFI), (iii) Joule dissipation irreversibility (JDI), and (iv) non-Darcy porous media irreversibility (NDI). The governing equations of continuity, momentum, energy, and entropy generation are simplified by taking long wavelength approximations on the channel walls. The results represent highly nonlinear coupled ordinary differential equations that are solved analytically with the help of the homotopy analysis method. It is shown that for minimum and maximum averaged entropy generation, 0.3% by vol and 0.9% by vol of nanoparticles, respectively, are observed. Also, a rise in entropy is evident due to an increase in pressure gradient. The current analysis provides an adequate theoretical estimate for low-cost purification of drinking water by silver nanoparticles in an industrial process.


Author(s):  
A. F. Chernyavsky ◽  
A. A. Kolyada ◽  
S. Yu. Protasenya

The article is devoted to the problem of creation of high-speed neural networks (NN) for calculation of interval-index characteristics of a minimally redundant modular code. The functional base of the proposed solution is an advanced class of neural networks of a final ring. These neural networks perform position-modular code transformations of scalable numbers using a modified reduction technology. A developed neural network has a uniform parallel structure, easy to implement and requires the time expenditures of the order (3[log2b]+ [log2k]+6tsum  close to the lower theoretical estimate. Here b and k is the average bit capacity and the number of modules respectively; t sum is the duration of the two-place operation of adding integers. The refusal from a normalization of the numbers of the modular code leads to a reduction of the required set of NN of the finite ring on the (k – 1) component. At the same time, the abnormal configuration of minimally redundant modular coding requires an average k-fold increase in the interval index module (relative to the rest of the bases of the modular number system). It leads to an adequate increase in hardware expenses on this module. Besides, the transition from normalized to unregulated coding reduces the level of homogeneity of the structure of the NN for calculating intervalindex characteristics. The possibility of reducing the structural complexity of the proposed NN by using abnormal intervalindex characteristics is investigated.


1972 ◽  
Vol 50 (20) ◽  
pp. 3379-3380 ◽  
Author(s):  
Kenji Fueki

A theoretical estimate has been made of the mobility and energy of quasifree electrons in liquid methane. It is shown that the calculated mobility is in agreement with the measured mobility and that the calculated energy is also consistent with a qualitative correlation between the mobility and energy of quasifree electrons in liquid alkanes.


Sign in / Sign up

Export Citation Format

Share Document