scholarly journals Automatic Feature Selection and Ensemble Classifier for Intrusion Detection

2021 ◽  
Vol 1856 (1) ◽  
pp. 012067
Author(s):  
Changjian Lin ◽  
Aiping Li ◽  
Rong Jiang
2018 ◽  
Vol 7 (1) ◽  
pp. 57-72
Author(s):  
H.P. Vinutha ◽  
Poornima Basavaraju

Day by day network security is becoming more challenging task. Intrusion detection systems (IDSs) are one of the methods used to monitor the network activities. Data mining algorithms play a major role in the field of IDS. NSL-KDD'99 dataset is used to study the network traffic pattern which helps us to identify possible attacks takes place on the network. The dataset contains 41 attributes and one class attribute categorized as normal, DoS, Probe, R2L and U2R. In proposed methodology, it is necessary to reduce the false positive rate and improve the detection rate by reducing the dimensionality of the dataset, use of all 41 attributes in detection technology is not good practices. Four different feature selection methods like Chi-Square, SU, Gain Ratio and Information Gain feature are used to evaluate the attributes and unimportant features are removed to reduce the dimension of the data. Ensemble classification techniques like Boosting, Bagging, Stacking and Voting are used to observe the detection rate separately with three base algorithms called Decision stump, J48 and Random forest.


2021 ◽  
Author(s):  
Jayaprakash Pokala ◽  
B. Lalitha

Abstract Internet of Things (IoT) is the powerful latest trend that allows communications and networking of many sources over the internet. Routing protocol for low power and lossy networks (RPL) based IoT networks may be exposed to many routing attacks due to resource-constrained and open nature of the IoT nodes. Hence, there is a need for network intrusion detection system (NIDS) to protect RPL based IoT networks from routing attacks. The existing techniques for anomaly-based NIDS (ANIDS) subjects to high false alarm rate (FAR). Therefore, a novel bio-inspired voting ensemble classifier with feature selection technique is proposed in this paper to improve the performance of ANIDS for RPL based IoT networks. The proposed voting ensemble classifier combines the results of various base classifiers such as logistic Regression, support vector machine, decision tree, bidirectional long short-term memory and K-nearest neighbor to detect the attacks accurately based on majority voting rule. The optimized weights of base classifiers are obtained by using the feature selection method called simulated annealing based improved salp swarm algorithm (SA-ISSA), which is the hybridization of particle swarm optimization, opposition based learning and salp swarm algorithm. The experiments are performed with RPL-NIDDS17 dataset that contains seven types of attack instances. The performance of the proposed model is evaluated and compared with existing feature selection and classification techniques in terms of accuracy, attack detection rate (ADR), FAR and so on. The proposed ensemble classifier shows better performance with higher accuracy (96.4%), ADR (97.7%) and reduced FAR (3.6%).


Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1764
Author(s):  
Ebrima Jaw ◽  
Xueming Wang

The emergence of ground-breaking technologies such as artificial intelligence, cloud computing, big data powered by the Internet, and its highly valued real-world applications consisting of symmetric and asymmetric data distributions, has significantly changed our lives in many positive aspects. However, it equally comes with the current catastrophic daily escalating cyberattacks. Thus, raising the need for researchers to harness the innovative strengths of machine learning to design and implement intrusion detection systems (IDSs) to help mitigate these unfortunate cyber threats. Nevertheless, trustworthy and effective IDSs is a challenge due to low accuracy engendered by vast, irrelevant, and redundant features; inept detection of all types of novel attacks by individual machine learning classifiers; costly and faulty use of labeled training datasets cum significant false alarm rates (FAR) and the excessive model building and testing time. Therefore, this paper proposed a promising hybrid feature selection (HFS) with an ensemble classifier, which efficiently selects relevant features and provides consistent attack classification. Initially, we harness the various strengths of CfsSubsetEval, genetic search, and a rule-based engine to effectively select subsets of features with high correlation, which considerably reduced the model complexity and enhanced the generalization of learning algorithms, both of which are symmetry learning attributes. Moreover, using a voting method and average of probabilities, we present an ensemble classifier that used K-means, One-Class SVM, DBSCAN, and Expectation-Maximization, abbreviated (KODE) as an enhanced classifier that consistently classifies the asymmetric probability distributions between malicious and normal instances. HFS-KODE achieves remarkable results using 10-fold cross-validation, CIC-IDS2017, NSL-KDD, and UNSW-NB15 datasets and various metrics. For example, it outclassed all the selected individual classification methods, cutting-edge feature selection, and some current IDSs techniques with an excellent performance accuracy of 99.99%, 99.73%, and 99.997%, and a detection rate of 99.75%, 96.64%, and 99.93% for CIC-IDS2017, NSL-KDD, and UNSW-NB15, respectively based on only 11, 8, 13 selected relevant features from the above datasets. Finally, considering the drastically reduced FAR and time, coupled with no need for labeled datasets, it is self-evident that HFS-KODE proves to have a remarkable performance compared to many current approaches.


Author(s):  
Md Arafatur Rahman ◽  
A. Taufiq Asyhari ◽  
Ong Wei Wen ◽  
Husnul Ajra ◽  
Yussuf Ahmed ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document