scholarly journals Design and Application of Automatic Dust-free Convey Equipment for Heavy Medium Solid Material on Offshore Drilling Platform

2021 ◽  
Vol 1861 (1) ◽  
pp. 012118
Author(s):  
Lian Xiaolong ◽  
Liu Hongli ◽  
Zhou Bo ◽  
Hou lin
Author(s):  
P.G. Pawar ◽  
P. Duhamel ◽  
G.W. Monk

A beam of ions of mass greater than a few atomic mass units and with sufficient energy can remove atoms from the surface of a solid material at a useful rate. A system used to achieve this purpose under controlled atmospheres is called an ion miliing machine. An ion milling apparatus presently available as IMMI-III with a IMMIAC was used in this investigation. Unless otherwise stated, all the micro milling operations were done with Ar+ at 6kv using a beam current of 100 μA for each of the two guns, with a specimen tilt of 15° from the horizontal plane.It is fairly well established that ion bombardment of the surface of homogeneous materials can produce surface topography which resembles geological erosional features.


Author(s):  
J. R. Sellar ◽  
J. M. Cowley

Current interest in high voltage electron microscopy, especially in the scanning mode, has prompted the development of a method for determining the contrast and resolution of images of specimens in controlled-atmosphere stages or open to the air, hydrated biological specimens being a good example. Such a method would be of use in the prediction of microscope performance and in the subsequent optimization of environmental cell design for given circumstances of accelerating voltage, cell gas pressure and constitution, and desired resolution.Fig. 1 depicts the alfresco cell of a focussed scanning transmission microscope with a layer of gas L (and possibly a thin window W) between the objective O and specimen T. Using the principle of reciprocity, it may be considered optically equivalent to a conventional transmission electron microscope, if the beams were reversed. The layer of gas or solid material after the specimen in the STEM or before the specimen in TEM has no great effect on resolution or contrast and so is ignored here.


2020 ◽  
Vol 3 (1) ◽  
pp. 346-353
Author(s):  
Naim Suleyman Tinğ ◽  
Huseyin Ozel ◽  
Lokman Celik ◽  
Enes Ganidagli ◽  
Hilal Akkamis

In this paper, the design and application of smart wheelchair and charging station for disabled citizen is realized. The first stage of the paper is to make the wheelchair used by our disabled citizens able to access smart home technology via the vehicle via touch screen. The ability of citizens with disabilities to call with direct access via touch screen is also in the wheelchair designed. Thanks to the touch screen placed on the vehicle, disabled citizens are provided with the control of smart automation to control many objects such as curtains and doors in the home. In the second part of the paper, a solar powered charging station is designed and installed in order to charge battery powered wheelchairs. In the charging station made a special card reader system and has the charger to charge the card with disabilities to actively and means are provided.


2016 ◽  
pp. 3524-3528
Author(s):  
Casey Ray McMahon

In this paper, I discuss the theory behind the use of a dense, concentrated neutron particle-based beam. I look at the particle based physics behind such a beam, when it is focused against solid material matter. Although this idea is still only theoretical, it appears that such a beam may be capable of disrupting the stability of the atoms within solid matter- in some cases by passing great volumes of neutrons between the electron and nucleus thus effectively “shielding” the electron from the charge of the nucleus. In other cases, by disrupting the nucleus by firing neutrons into it, disrupting the nucleus and weakening its bond on electrons. In either case- the resulting effect would be a disruption of the atom, which in the case of material matter would cause said material matter to fail, which would appear to the observer as liquification with some plasma generation. Thus, a dense neutron particle based beam could be used to effectively liquefy material matter. Such a beam could bore through rock, metal, or even thick, military grade armour, like that used on tanks- causing such materials to rapidly liquefy. The denser and thicker the neutron beam, the more devastating the effect of the beam- thus the faster material matter will liquefy and the greater the area of liquification. Such a beam would have applications in Defence, mining and drilling operations.


Author(s):  
I.P. Zaikin ◽  
◽  
K.V. Kempf ◽  
R.R. Naboka ◽  
V.A. Guregyants ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document