scholarly journals Multi-soliton states of spherically symmetric quartic submodels in five dimensional Skyrme Model

2021 ◽  
Vol 1951 (1) ◽  
pp. 012069
Author(s):  
Emir Syahreza Fadhilla ◽  
Bobby Eka Gunara ◽  
Ardian Nata Atmaja
2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Emir Syahreza Fadhilla ◽  
Bobby Eka Gunara ◽  
Ardian Nata Atmaja

Abstract In this paper, we search for the BPS skyrmions in some BPS submodels of the generalized Skyrme model in five-dimensional spacetime using the BPS Lagrangian method. We focus on the static solutions of the Bogomolny’s equations and their corresponding energies with topological charge B > 0 is an integer. We consider two main cases based on the symmetry of the effective Lagrangian of the BPS submodels, i.e. the spherically symmetric and non-spherically symmetric cases. For the spherically symmetric case, we find two BPS submodels. The first BPS submodels consist of a potential term and a term proportional to the square of the topological current. The second BPS submodels consist of only the Skyrme term. The second BPS submodel has BPS skyrmions with the same topological charge B > 1, but with different energies, that we shall call “topological degenerate” BPS skyrmions. It also has the usual BPS skyrmions with equal energies, if the topological charge is a prime number. Another interesting feature of the BPS skyrmions, with B > 1, in this BPS submodel, is that these BPS skyrmions have non-zero pressures in the angular direction. For the non-spherically symmetric case, there is only one BPS submodel, which is similar to the first BPS submodel in the spherically symmetric case. We find that the BPS skyrmions depend on a constant k and for a particular value of k we obtain the BPS skyrmions of the first BPS submodel in the spherically symmetric case. The total static energy and the topological charge of these BPS skyrmions also depend on this constant. We also show that all the results found in this paper satisfy the full field equations of motions of the corresponding BPS submodels.


1991 ◽  
Vol 118 (3-4) ◽  
pp. 271-288 ◽  
Author(s):  
J. B. McLeod ◽  
W. C. Troy

SynopsisThe paper discusses properties of solutions of the differential equationand in particular the existence and uniqueness of solutions to the boundary-value problem associated with the above equation and the boundary conditionsThis equation, first introduced by Skyrme, is a spherically symmetric model for a soliton description of nucleons.


Author(s):  
Nathalie Deruelle ◽  
Jean-Philippe Uzan

This chapter presents the basics of the ‘effective-one-body’ approach to the two-body problem in general relativity. It also shows that the 2PN equations of motion can be mapped. This can be done by means of an appropriate canonical transformation, to a geodesic motion in a static, spherically symmetric spacetime, thus considerably simplifying the dynamics. Then, including the 2.5PN radiation reaction force in the (resummed) equations of motion, this chapter provides the waveform during the inspiral, merger, and ringdown phases of the coalescence of two non-spinning black holes into a final Kerr black hole. The chapter also comments on the current developments of this approach, which is instrumental in building the libraries of waveform templates that are needed to analyze the data collected by the current gravitational wave detectors.


1965 ◽  
Vol 6 (1) ◽  
pp. 1-5 ◽  
Author(s):  
P. G. Bergmann ◽  
M. Cahen ◽  
A. B. Komar

1997 ◽  
Vol 12 (27) ◽  
pp. 4831-4835 ◽  
Author(s):  
K. S. Virbhadra

We show that the well-known most general static and spherically symmetric exact solution to the Einstein-massless scalar equations given by Wyman is the same as one found by Janis, Newman and Winicour several years ago. We obtain the energy associated with this space–time and find that the total energy for the case of the purely scalar field is zero.


Sign in / Sign up

Export Citation Format

Share Document