scholarly journals Finite-time stabilization for a first-order hyperbolic system with integral kernel by boundary control

2021 ◽  
Vol 1978 (1) ◽  
pp. 012030
Author(s):  
Caijin Zeng ◽  
Zhongcheng Zhou
2022 ◽  
Vol 27 (1) ◽  
pp. 1-18
Author(s):  
Chaouki Aouiti ◽  
Jinde Cao ◽  
Hediene Jallouli ◽  
Chuangxia Huang

This paper deals with the finite-time stabilization of fractional-order inertial neural network with varying time-delays (FOINNs). Firstly, by correctly selected variable substitution, the system is transformed into a first-order fractional differential equation. Secondly, by building Lyapunov functionalities and using analytical techniques, as well as new control algorithms (which include the delay-dependent and delay-free controller), novel and effective criteria are established to attain the finite-time stabilization of the addressed system. Finally, two examples are used to illustrate the effectiveness and feasibility of the obtained results.


Author(s):  
Long Hu ◽  
Guillaume Olive

The goal of this article is to present the minimal time needed for the null controllability and finite-time stabilization of one-dimensional first-order 2×2 linear hyperbolic systems. The main technical point is to show that we cannot obtain a better time. The proof combines the backstepping method with the Titchmarsh convolution theorem.


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 728
Author(s):  
Yasunori Maekawa ◽  
Yoshihiro Ueda

In this paper, we study the dissipative structure of first-order linear symmetric hyperbolic system with general relaxation and provide the algebraic characterization for the uniform dissipativity up to order 1. Our result extends the classical Shizuta–Kawashima condition for the case of symmetric relaxation, with a full generality and optimality.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Tingting Yang ◽  
Yichao Ma ◽  
Pengfei Zhang ◽  
Jingyun Xu

Sign in / Sign up

Export Citation Format

Share Document