scholarly journals System Level Simulation of Micro Grid Power Electronic System

2021 ◽  
Vol 2022 (1) ◽  
pp. 012003
Author(s):  
Kristian Takacs ◽  
Michal Frivaldsky
2011 ◽  
Vol 131 (1) ◽  
pp. 110-117
Author(s):  
Toshiji Kato ◽  
Kaoru Inoue ◽  
Yoshihiro Fujiwara

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Saeed Peyghami ◽  
Tomislav Dragicevic ◽  
Frede Blaabjerg

AbstractThis paper proposes a long-term performance indicator for power electronic converters based on their reliability. The converter reliability is represented by the proposed constant lifetime curves, which have been developed using Artificial Neural Network (ANN) under different operating conditions. Unlike the state-of-the-art theoretical reliability modeling approaches, which employ detailed electro-thermal characteristics and lifetime models of converter components, the proposed method provides a nonparametric surrogate model of the converter based on limited non-linear data from theoretical reliability analysis. The proposed approach can quickly predict the converter lifetime under given operating conditions without a further need for extended, time-consuming electro-thermal analysis. Moreover, the proposed lifetime curves can present the long-term performance of converters facilitating optimal system-level design for reliability, reliable operation and maintenance planning in power electronic systems. Numerical case studies evaluate the effectiveness of the proposed reliability modeling approach.


Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 644
Author(s):  
Michal Frivaldsky ◽  
Jan Morgos ◽  
Michal Prazenica ◽  
Kristian Takacs

In this paper, we describe a procedure for designing an accurate simulation model using a price-wised linear approach referred to as the power semiconductor converters of a DC microgrid concept. Initially, the selection of topologies of individual power stage blocs are identified. Due to the requirements for verifying the accuracy of the simulation model, physical samples of power converters are realized with a power ratio of 1:10. The focus was on optimization of operational parameters such as real-time behavior (variable waveforms within a time domain), efficiency, and the voltage/current ripples. The approach was compared to real-time operation and efficiency performance was evaluated showing the accuracy and suitability of the presented approach. The results show the potential for developing complex smart grid simulation models, with a high level of accuracy, and thus the possibility to investigate various operational scenarios and the impact of power converter characteristics on the performance of a smart gird. Two possible operational scenarios of the proposed smart grid concept are evaluated and demonstrate that an accurate hardware-in-the-loop (HIL) system can be designed.


2021 ◽  
Vol 18 (4) ◽  
pp. 1-27
Author(s):  
Yasir Mahmood Qureshi ◽  
William Andrew Simon ◽  
Marina Zapater ◽  
Katzalin Olcoz ◽  
David Atienza

The increasing adoption of smart systems in our daily life has led to the development of new applications with varying performance and energy constraints, and suitable computing architectures need to be developed for these new applications. In this article, we present gem5-X, a system-level simulation framework, based on gem-5, for architectural exploration of heterogeneous many-core systems. To demonstrate the capabilities of gem5-X, real-time video analytics is used as a case-study. It is composed of two kernels, namely, video encoding and image classification using convolutional neural networks (CNNs). First, we explore through gem5-X the benefits of latest 3D high bandwidth memory (HBM2) in different architectural configurations. Then, using a two-step exploration methodology, we develop a new optimized clustered-heterogeneous architecture with HBM2 in gem5-X for video analytics application. In this proposed clustered-heterogeneous architecture, ARMv8 in-order cluster with in-cache computing engine executes the video encoding kernel, giving 20% performance and 54% energy benefits compared to baseline ARM in-order and Out-of-Order systems, respectively. Furthermore, thanks to gem5-X, we conclude that ARM Out-of-Order clusters with HBM2 are the best choice to run visual recognition using CNNs, as they outperform DDR4-based system by up to 30% both in terms of performance and energy savings.


Sign in / Sign up

Export Citation Format

Share Document